## Fall 2005 Math 151

## Exam I Review

courtesy: Amy Austin
(covering sections 1.1-3.3)

## Section 1.1

1. Given $\mathbf{a}=-3 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{b}=-4 \mathbf{i}+2 \mathbf{j}$, compute and illustrate $-2 \mathbf{a}+3 \mathbf{b}$.
2. Given $\mathbf{a}$ and $\mathbf{b}$ above, find a unit vector orthogonal to $\mathbf{a}-\mathbf{b}$.
3. Given $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{b}=4 \mathbf{i}-\mathbf{j}$, find scalars $s$ and $t$ such that $s \mathbf{a}+t \mathbf{b}=2 \mathbf{j}$.
4. An object on the ground is pulled by two forces $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$. If $\left|\mathbf{F}_{\mathbf{1}}\right|$ is 8 pounds with direction due east and $\left|\mathbf{F}_{\mathbf{2}}\right|$ is 20 pounds with direction $N 60^{\circ} E$, find the magnitude of the resultant force.

## Section 1.2

5. Given the points $A(1,4), B(-1,2)$ and $C(3,0)$, find the three angles of $\triangle A B C$.
6. Find the value of $x$ such that the vector from $P(-4,2)$ to $Q(2,1)$ is parallel to the vector from $R(9, x-4)$ to $S(6,2-x)$.
7. Find the vector and scalar projections of $\langle 3,2\rangle$ onto $\langle 1,4\rangle$. Sketch the vector projection.
8. A constant force with vector representation
$\mathbf{F}=10 i+18 j$ moves an object from the point $(2,3)$ to the point $(4,9)$. Find the work done if the distance is measured in meters and the magnitude of the force is measured in Newtons.
9. A woman exerts a horizontal force of 25 pounds as she pushes a crate up a ramp that is 10 feet long and inclined at an angle of $20^{\circ}$ above the horizontal. Find the work done.

## Section 1.3

10. Sketch the graph of the vector function

$$
\mathbf{r}(t)=3 \cos (2 t) \mathbf{i}+5 \sin (2 t) \mathbf{j} .
$$

11. Find parametric equations of the line through the points $(2,-3)$ and $(-4,5)$.
12. Sketch the parametric curve $x=\sqrt{t+2}, y=2 t-1$
13. Given the line $(2+3 t) i+(6-4 t) j$, find:
a.) A cartesian equation of the line.
b.) A vector perpendicular to the line.

## Section 2.2

14. Given $f(x)= \begin{cases}2-x & \text { if } x<-1 \\ x & \text { if }-1 \leq x<1 \\ 4 & \text { if } x=1 \\ 4-x & \text { if } x>1\end{cases}$
a.) Sketch the graph of $f(x)$
b.) Find the following limits:
$\lim _{x \rightarrow-1^{-}} f(x) ; \lim _{x \rightarrow-1^{+}} f(x) ; \lim _{x \rightarrow-1} f(x)$;
$\lim _{x \rightarrow 1^{-}} f(x) ; \lim _{x \rightarrow 1^{+}} f(x) ; \lim _{x \rightarrow 1} f(x)$
15. Determine the limit: $\lim _{x \rightarrow 3} \frac{x(4-x)}{(x-3)^{2}}$
16. Find the vertical and horizontal asymptotes for $f(x)=\frac{6 x}{3 x-x^{2}}$

## Sections 2.3 and 2.6

17. $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x^{2}+13 x+12}$
18. $\lim _{x \rightarrow-2}\left(\frac{1}{x+2}+\frac{4}{x^{2}-4}\right)$
19. $\lim _{t \rightarrow-\infty} \mathbf{r}(\mathbf{t})$ where $\mathbf{r}(\mathbf{t})=\left\langle\frac{t^{2}-4}{3 t^{2}-6 t+3}, \frac{3 t}{\sqrt{t^{2}-4 t}}\right\rangle$
20. $\lim _{x \rightarrow 0^{-}} \frac{x}{\left|x^{2}-x\right|}$
21. $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+3 x+1}\right)$

## Section 2.5

22. Let $f(x)= \begin{cases}x^{2}-2 & \text { if } x<0 \\ \frac{x^{2}-4}{x-2} & \text { if } 0 \leq x<2 \\ x^{3}-4 & \text { if } x \geq 2\end{cases}$
a.) Show $f(x)$ is continuous at $x=2$ or explain why it is discontinuous.
b.) Show $f(x)$ is continuous at $x=0$ or explain why it is discontinuous.
23. State the Intermediate Value Theorem and use it to prove there is a solution to the equation
$x^{3}+2 x+1=0$
24. Given $f(x)= \begin{cases}3 x^{3}-2 x+2 a & \text { if } x<1 \\ 5 & \text { if } x=1 \\ 3 a x-1 & \text { if } x>1\end{cases}$
find the value of $a$ that makes $f(x)$ continuous everywhere, if possible. If it is not possible, be sure to support your answer.
25. Refer to the graph given below to find all $x$ coordinates where $f(x)$ is not continuous. Support your answer.


## Sections 2.7 and 3.1

26. A ball is thrown into the air with a speed of 40 $\mathrm{ft} / \mathrm{sec}$. The height of the ball after $t$ seconds is given by $h(t)=40 t-16 t^{2}$.
a.) Find the average velocity of the ball from $t=2$ to $t=2.5$.
b.) Using the limit definition, find the instantaneous velocity of the ball at $t=2$ seconds.
27. Given $f(x)=\sqrt{x+1}$
a.) Find the slope of the secant line joining the points $(2, \sqrt{3})$ and $(3,2)$
b.) Using the limit definition, find the slope of the tangent line to the graph of $f(x)$ at the point $(3,2)$. What is the equation of this tangent line?
28. Compute the derivative of $f(x)=\frac{x}{x+1}$, using the definition of the derivative.
29. $f(x)=\left\{\begin{array}{ll}a x+3 & \text { if } x \leq 3 \\ b x^{2}-2 x+8 & \text { if } x>3\end{array}\right.$,
find the values of $a$ and $b$ that make $f(x)$ continuous and differentiable everywhere.
30. Refer to the graph given in number 25 to determine where $f(x)$ is not differentiable.

## Section 3.2

31. Find the derivative of the following functions.
a.) $f(x)=x^{3}\left(x^{4}+3 x^{2}+2 x\right)$
b.) $g(x)=\frac{x^{2}+x}{x^{3}-1}$
c.) $f(t)=\sqrt{t^{3}}-\frac{5}{\sqrt{t}}+\pi^{2}$
d.) $\mathbf{r}(\mathbf{t})=\left\langle 10 \sqrt{t}, 30 t-\frac{16}{t^{2}}\right\rangle$
32. If $f(x)=\left|x^{2}-9\right|$, find where $f(x)$ is not differentiable. Find a formula for $f^{\prime}(x)$ and sketch the graph of $f(x)$ and $f^{\prime}(x)$.
33. Find the equation of the tangent line to the graph of $f(x)=x^{2}+\frac{5}{x}$ where $x=1$.
34. If $6 x+2 y=3$ is the equation of the tangent line to the graph of $f(x)$ at $x=1$, what is $f^{\prime}(1)$ ?
35. If $f(x)=g(x)(h(x)+5 x)$, find $f^{\prime}(1)$ given the table below.

| $x$ | $g(x)$ | $h(x)$ | $g^{\prime}(x)$ | $h^{\prime}(x)$ |
| :--- | ---: | ---: | ---: | ---: |
| 1 | 2 | -3 | 4 | -1 |

36. Work problem 61, page 169 in Stewart text book.
37. Draw a diagram to show there are two tangent lines to the parabola $y=x^{2}$ that pass thru the point $(0,-4)$. Find the $x$ coordinates where these tangent lines touch the parabola.
38. Suppose a curve C is represented by the vector equation
$\mathbf{r}(\mathbf{t})=\left\langle 2 t+1, t^{2}-2 t\right\rangle:$
a.) Find the tangent vector to the curve at the point $(3,-1)$.
b.) Find parametric equations for the tangent line to the curve at the point $(3,-1)$.
39. Find all points on the graph of $f(x)=x \sqrt{x}$ where the tangent line is parallel to the line $6 x-2 y+3=0$.

## Section 3.3

40. A particle moves according to the equation of motion $s=4 t^{3}-9 t^{2}+6 t+2, t \geq 0$, where $s$ is measured in feet and $t$ in seconds. When is the particle at rest? When is the particle moving in the negative direction?
