SAMPLE EXAM II

Part I - Multiple Choice

1. Use differentials to approximate $\sqrt{11}$.
a) $\frac{8}{3}$
b) $\frac{11}{3}$
c) $\frac{23}{6}$
d) $\frac{21}{6}$
e) $\frac{10}{3}$
2. If $f(x)=3 x \cos ^{2}\left(x^{2}\right)$, find $f^{\prime}(0)$.
a) 0
b) -3
c) 3
d) 1
e) -9
3. The position of a particle is given by the equation $s(t)=t^{3}-6 t^{2}+9 t+4$ where t is measured in seconds and $s(t)$ in meters. Which of the following statements is false?
a) The object is at rest at time $t=1$ second.
b) The object has positive acceleration at $t=3$ second
c) The object is moving in the positive direction between $t=0$ and $t=\frac{1}{2}$
d) The total distance traveled in the first 3 seconds is 30 meters.
e) All of the above statements are true.
4. Two sides of a triangle are fixed at 4 cm and 6 cm and the angle between them is increasing at a rate of .02 radians per second. How fast is the area of the triangle increasing when the angle between them is $\frac{\pi}{6}$?
a) $(.12) \sqrt{3}$
b) $\frac{.02}{6}$
c) $\frac{.02}{6 \sqrt{3}}$
d) . 12
e) $12 \sin (.02)$
5. Let $f(x)=\left(1+x^{2}\right)^{\frac{3}{2}}$. Then $f^{\prime \prime}(0)=$
a) 3
b) 0
c) 6
d) $\frac{3}{4 \sqrt{2}}$
e) $\frac{3}{4}$
6. What values of r does $y=e^{r x}$ satisfy the equation $y^{\prime \prime}+y^{\prime}-2 y=0$?
a) $r=2, r=-1$
b) $r=2, r=3$
c) $r= \pm \sqrt{2}$
d) $r=-2, r=1$
e) $r=2, r=-2$
7. The function $f(x)=x^{3}+5 x-1$ is one-to-one. Let $g=f^{-1}$. Then $g^{\prime}(5)=$
a) 8
b) $\frac{1}{80}$
c) $\frac{8}{25}$
d) $\frac{1}{8}$
e) 80
8. Given the curve parametrized by $x=t^{3}-3 t^{2}-9 t+1, y=t^{3}+3 t^{2}-9 t+1$, at which point does the curve have a vertical tangent?
a) $(1,-3)$
b) $(6,12)$
c) $(-10,6)$
d) $(-1,3)$
e) $(1,1)$
9. $\lim _{x \rightarrow 0} \frac{4 \cos x-4+3 \sin x}{5 x}=$
a) $\frac{4}{5}$
b) $-\frac{4}{5}$
c) $\frac{3}{5}$
d) 1
e) 0
10. Find the slope of the line tangent to the curve given by $y^{2}+x y=8$ at the point $(-2,-2)$.
a) -2
b) $-\frac{10}{3}$
c) $-\frac{1}{3}$
d) -3
e) 0
11. Which of the following statements is true about the curve $(2+\cos t) \mathbf{i}+(1+\sin t) \mathbf{j}$?
a) Clockwise movement around the circle $(x-2)^{2}+(y-1)^{2}=1$
b) Counterclockwise movement around the circle $(x-2)^{2}+(y-1)^{2}=1$
c) Clockwise movement around the ellipse $x^{2} / 4+y^{2}=1$
d) Counterclockwise movement around the ellipse $x^{2} / 4+y^{2}=1$
e) None of the above statements is correct.
12. Let $f(x)$ be a differentiable function and let $g(x)=3 x^{2}-1$. Let $H(x)=f(g(x))$, the composit of f and g. If $f(0)=1, f^{\prime}(0)=-1, f(1)=3, f^{\prime}(1)=2, f(2)=-1, f^{\prime}(2)=5$, find $H^{\prime}(1)$.
a) 30
b) 12
c) -6
d) 6
e) 5
13. $\lim _{x \rightarrow \infty} 3^{1-x}=$
a) 0
b) ∞
c) $-\infty$
d) 1
e) 3
14. Find the domain and range of the inverse of $f(x)=\frac{3 x-5}{7 x+2}$
a) Domain: All real numbers except $\frac{2}{7}$; Range: All real numbers except $-\frac{3}{7}$
b) Domain: All real numbers except $-\frac{2}{7}$; Range: All real numbers except $\frac{3}{7}$
c) Domain: All real numbers except $\frac{3}{7}$; Range: All real numbers except $-\frac{2}{7}$
d) Domain: All real numbers except $\frac{5}{3}$; Range: All real numbers.
e) None of the above is correct.
15. If $\langle\cos 3 t, t\rangle$ is the position of an object at time t, find the acceleration of the object at time $t=\frac{\pi}{9}$.
a) $\left\langle\frac{1}{2}, 0\right\rangle$
b) $\left\langle-\frac{1}{2}, 0\right\rangle$
c) $\left\langle-\frac{9}{2}, 0\right\rangle$
d) $\left\langle\frac{9}{2}, 0\right\rangle$
e) $\langle 3,0\rangle$
16. If $f(x)=e^{x \tan x}$, find $f^{\prime}(x)$.
a) $f^{\prime}(x)=e^{x \tan x}$
b) $f^{\prime}(x)=\sec ^{2} x e^{x \tan x}$
c) $f^{\prime}(x)=\left(\tan x+x \sec ^{2} x\right) e^{x \tan x}$
d) $f^{\prime}(x)=(\tan x+x \sec x \tan x) e^{x \tan x}$
e) $f^{\prime}(x)=x \tan x e^{x \tan x-1}$
17. Find the equation of the tangent line to the graph of $x=e^{2 t}, y=t e^{t}$ at the point $(1,0)$.
a) $y=2 x-1$
b) $y=4 x-4$
c) $y=\frac{1}{2} x-\frac{1}{2}$
d) $y=\frac{1}{3} x-\frac{1}{3}$
e) $y=x-1$
18. Find the quadratic approximation for $f(x)=\frac{1}{x}$ at $x=1$.
a) $x^{2}-3 x+3$
b) $x^{2}-x+2$
c) $x^{2}-2 x+1$
d) $x^{2}+4 x+5$
e) $x^{2}+x-3$

Part II - Work Out Problems

No calculators
19. a.) Find the linear approximation for $f(x)=\sqrt[4]{x+1}$ at $x=0$.
b.) Use part a.) to obtain an approximation to $\sqrt[4]{1.01}$
20. The position of a particle is given by $\mathbf{r}(t)=\left\langle\frac{\cos t}{e^{t}}, \frac{\sin t}{e^{t}}\right\rangle$. Find the velocity and speed of the particle when $t=0$.
21. The radius of a sphere was given to be 8 inches with a maximum possible error in measurement of 0.01 inches. Use differentials to estimate the maximum error in the calculated volume of the sphere.
22. Find all values of x between 0 and 2π where the tangent line to $f(x)=2 x-\tan x$ is horizontal.
23. A trough is 20 feet long. The end of the trough is an isosceles triangle with height 10 feet and length of 3 feet across the top. If water is poured in the trough at a rate of 3 cubic feet per minute, how fast is the water level rising when the height of the water is 1 foot?
24. Find an equation (in any form) of the line tangent to the curve $\mathbf{r}(t)=\left(t^{6}+t^{3}\right) \mathbf{i}+\left(t^{4}+t^{2}\right) \mathbf{j}$ at the point where $t=1$.
25. A rope is attached to the bow of a boat coming in for the evening. Assme the rope is drawn in over a pully 5 feet higher than the bow at a rate of 2 feet per second. How fast is the boat docking when the length of the rope from the bow to the pully is 13 feet?

