Answers to WIR 3 Review Problems

1. Not continuous at $x=-1$ because $\lim _{x \rightarrow-1} f(x)$ does not exist, not continuous at $x=-5$ because $\lim _{x \rightarrow-5} f(x) \neq f(-5)$, not continuous at $x=4$ because $\lim _{x \rightarrow 4} f(x)$ does not exist, or because $x=4$ is not in the domain, continuous at $x=-2$.
2. Not continuous at $x=1$ because $\lim _{x \rightarrow 1} f(x) \neq f(1)$, not continuous at $x=0$ because it is not in the domain.
3. Discontinuous at $x=-3$ and $x=-2 . \lim _{x \rightarrow-3} f(x)=-1, \lim _{x \rightarrow-2^{+}} f(x)=\infty, \lim _{x \rightarrow-2^{-}} f(x)=-\infty$, thus $\lim _{x \rightarrow-2} f(x)$ does not exist.
4. A solution to the equation exists on $(-1,0)$ by the Intermediate Value Theorem.
5. A solution to the equation exists on $(-1,0)$ by the Intermediate Value Theorem.
6. $c=2, d=-2$
7. а.) -3
b.) $-\infty$
c.) $-\frac{5}{3}$
d.) $-\frac{\sqrt{3}}{4}$
e.) $\frac{5}{2}$
f.) $-\frac{1}{2}$
8. a.) VA: $x=1, x=-1$; HA: $y=1$
b.) VA: None; HA: $y=1$ and $y=-1$
c.) VA: $x=4$, HA: $y=0$
9. a.) $y-2=\frac{1}{4}(x-3)$
b.) $y=x$
10. a.) $-1 \mathrm{~m} / \mathrm{s}$
b.) $-2 \mathrm{~m} / \mathrm{s}$
11. a.) $\langle 4,2\rangle$
b.) $x=4+4 t, y=2+2 t$
c.) $y=\frac{x}{2}$
