Fall 2005 Math 151

Week in Review II

courtesy: Amy Austin (covering sections 1.3, 2.2, 2.3)

Section 1.3

1. Find a cartesian equation for the following parametric curves. Sketch the curve and be sure to state the domain and range.

a.)
$$x = 1 - t, y = 4t + 2$$

b.)
$$x = t + 2, y = 3 - 2t, 0 \le t \le 3$$

c.)
$$x = \sqrt{t}, y = t - 4$$

d.)
$$x = 2\cos t, y = 3\sin t, 0 \le t \le \pi$$

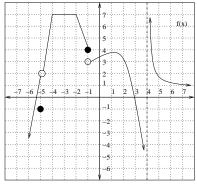
e.)
$$x = 3 + \sin t, y = 2 + \cos t$$

f.)
$$x = \cos t, y = \sin^2 t$$

2. An object is moving in the xy-plane and the position of the object after t seconds is given by

$$\mathbf{r}(\mathbf{t}) = \langle t+4, t^2 + 2t \rangle.$$

- a.) Find the position of the object at time t = 2.
- b.) At what time does the object reach the point (7,15)?
- c.) Does the object pass through the point (9,20)?
- d.) Find a cartesian equation for the path of the object.
- 3. Find parametric equations for the line that passes thru the points (0,3) and (-3,5).
- 4. Determine whether the following lines are parallel or perpendicular. If they are not parallel, find the point of intersection.


L1:
$$\mathbf{r}(\mathbf{t}) = (-4 + 2t)\mathbf{i} + (5 + t)\mathbf{j}$$

L2:
$$\mathbf{r}(\mathbf{t}) = (2+3t)\mathbf{i} + (4-6t)\mathbf{j}$$

5. Find parametric equations for the line that passes thru the point (1,5) and is perpendicular to the line x = 1 + t, y = 5 + 4t.

Section 2.2

6. Use the graph of f(x) below to compute the following limits:

- a) $\lim_{x \to -1^-} f(x)$
- b) $\lim_{x \to -1^+} f(x)$
- c) $\lim_{x \to -1} f(x)$
- d) $\lim_{x \to -5} f(x)$
- e) $\lim_{x \to 4^+} f(x)$
- f.) $\lim_{x \to -3} f(x)$
- 7. $\lim_{x \to 4^+} \frac{x-1}{x-4}$
- 8. Find the vertical asymptote(s) of the function $f(x) = \frac{x-7}{x^2-6x-7}$ and determine the behavior of the function near the vertical asymptote(s).

Section 2.3

Compute the exact value of the following limits:

9.
$$\lim_{x\to 2} (x^2 - x - 3)$$

10.
$$\lim_{x \to -2} \frac{x^2 + 5x + 6}{x^2 + x - 2}$$

11.
$$\lim_{x \to 1} \frac{\sqrt{x^2 + 2x} - \sqrt{3}}{x - 1}$$

12.
$$\lim_{x \to 3} \left(\frac{1}{x} - \frac{1}{3} \right) \left(\frac{1}{x - 3} \right)$$

13.
$$\lim_{x\to 2} \frac{x-4}{x-2}$$

14.
$$\lim_{t \to 1} \left(\frac{1}{t-1} - \frac{2}{t^2 - 1} \right)$$

15.
$$\lim_{x \to 3} f(x)$$
, where $f(x) = \begin{cases} \sqrt{x^2 + 16} & \text{if } x \le 3\\ x^3 - 10 & \text{if } x > 3 \end{cases}$

16.
$$\lim_{x\to 2} \frac{|3x-6|}{x^2-2x}$$

17.
$$\lim_{x \to 0^-} \left(\frac{1}{x} - \frac{1}{|x|} \right)$$

- 18. Sketch the graph of $f(x) = \frac{|x-4|}{x-4}$ and give all x coordinates where the limit does not exist.
- 19. $\lim_{x\to 1} f(x)$ if it is known that $4x \le f(x) \le x+3$ for all x in [0,2].
- 20. $\lim_{x \to 0} x^4 \sin(\frac{1}{x})$