Fall 2005 Math 151

Week in Review; R Oct 19 courtesy: Amy Austin (covering sections 3.11 - 3.12, 4.1)

Section 3.11

- 1. Given $y = 4 x^2$
 - a.) Find Δy if x changes from x = 1 to x = 1.5
 - b.) Find dy for x = 1 and dx = 0.5.
 - c.) Sketch a graph of f(x) and label what Δy and dy represent.
- 2. Use differentials to approximate :
 - a.) $\sqrt[4]{1.02}$
 - b.) $\cos 59^{\circ}$
- 3. Find the linear approximation for $y = \frac{1}{x}$ at $x = \frac{1}{2}$ Sketch the graph of y as well as the linear approximation.
- 4. Find the linear approximation for $y = \sqrt[3]{1+x}$ at a = 0 and use it to approximate $\sqrt[3]{.95}$ and $\sqrt[3]{1.1}$
- 5. Find the quadratic approximation for $y = \frac{1}{x^2}$ at a = 2
- 6. The radius of a circular disk is given as 24 cm with a maximum error in measurement of 0.2 cm. Use differentials to estimate the maximum error in the calculated area of the disk.

Section 3.12

- 7. Given $f(x) = x^3 + x^2 + 2$, use Newtons Method with $x_1 = -2$ to find the third approximation to the root of the given equation.
- 8. Use Newtons method to approximate $\sqrt[10]{100}$ to 6 decimal places. HINT: Define $f(x) = x^{10} 100$ and use $x_1 = 1.5$.
- 9. Use Newtons Method to approximate the root of $x^4 + x^3 22x^2 2x + 41 = 0$ in the interval [1, 2] to 6 decimal places.

Section 4.1

- 10. Sketch the graph of $f(x) = 3^x$ and $f(x) = 5^x$ on the same axis. Be sure to label each graph.
- 11. Compute $\lim_{x\to\infty}\frac{2^{-x}+2^x}{4^{-x}+3^x}$
- 12. If $y = x^r e^{sx}$, and s where r are constants, find y'.

13. Given
$$f(x) = \frac{e^x - e^{\frac{x}{2}}}{2}$$
, find $f''(0)$

14. Find the derivative:
a.)
$$f(x) = \sqrt{4 - e^{-2x}}$$

b.) $f(x) = \tan^3(e^{-x})$