Fall 2005 Math 151

Week in Review; R Oct 19
courtesy: Amy Austin
(covering sections 3.11-3.12, 4.1)

Section 3.11

1. Given $y=4-x^{2}$
a.) Find Δy if x changes from $x=1$ to $x=1.5$
b.) Find $d y$ for $x=1$ and $d x=0.5$.
c.) Sketch a graph of $f(x)$ and label what Δy and $d y$ represent.
2. Use differentials to approximate :
a.) $\sqrt[4]{1.02}$
b.) $\cos 59^{\circ}$
3. Find the linear approximation for $y=\frac{1}{x}$ at $x=\frac{1}{2}$ Sketch the graph of y as well as the linear approximation.
4. Find the linear approximation for $y=\sqrt[3]{1+x}$ at $a=0$ and use it to approximate $\sqrt[3]{.95}$ and $\sqrt[3]{1.1}$
5. Find the quadratic approximation for $y=\frac{1}{x^{2}}$ at $a=2$
6. The radius of a circular disk is given as 24 cm with a maximum error in measurement of 0.2 cm . Use differentials to estimate the maximum error in the calculated area of the disk.

Section 3.12

7. Given $f(x)=x^{3}+x^{2}+2$, use Newtons Method with $x_{1}=-2$ to find the third approximation to the root of the given equation.
8. Use Newtons method to approximate $\sqrt[10]{100}$ to 6 decimal places. HINT: Define $f(x)=x^{10}-100$ and use $x_{1}=1.5$.
9. Use Newtons Method to approximate the root of $x^{4}+x^{3}-22 x^{2}-2 x+41=0$ in the interval $[1,2]$ to 6 decimal places.

Section 4.1

10. Sketch the graph of $f(x)=3^{x}$ and $f(x)=5^{x}$ on the same axis. Be sure to label each graph.
11. Compute $\lim _{x \rightarrow \infty} \frac{2^{-x}+2^{x}}{4^{-x}+3^{x}}$
12. If $y=x^{r} e^{s x}$, and s where r are constants, find y^{\prime}.
13. Given $f(x)=\frac{e^{x}-e^{\frac{x}{2}}}{2}$, find $f^{\prime \prime}(0)$
14. Find the derivative:
a.) $f(x)=\sqrt{4-e^{-2 x}}$
b.) $f(x)=\tan ^{3}\left(e^{-x}\right)$
