Fall 2005 Math 152

courtesy: Amy Austin (covering sections 6.5 - 8.4)

Section 6.5

1.
$$\int_{1}^{2} \frac{6x}{4x^{2}+2} dx$$

2.
$$\int x^{3} \sqrt{4x^{4}-9} dx$$

3.
$$\int x^{2} e^{1-x^{3}} dx$$

4.
$$\int x \sin(x^{2}-2) dx$$

Section 7.1

- 5. Find the areas of the regions bounded by the following pairs of curves.
 - a.) $x + y^2 = 2, x + y = 0$
 - b.) $y = x + 2, y = x^2$
 - c.) $y = \cos x, \ y = \sin x, \ x = 0, \ x = \pi$

Section 7.2 and 7.3

- 6. Find the volume of the solid obtained by rotating the region bounded by y = x and $y = x^3$ (First quadrant only). about the x-axis.
- 7. Find the volume of the solid obtained by rotating the region in the first quadrant bounded by $y = x^2$, y = 4, and x = 0 about the y axis.
- 8. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, and y = 2xabout the line x = 4. Use the method of shells.
- 9. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, x = 0, and y = 1 about the line y = 2.
- 10. Find the volume of the solid whose base is bounded by the ellipse $\frac{x^2}{4} + y^2 = 1$ and whose crosssections perpendicular to the *x*-axis are equilateral triangles.

Section 7.4

- 11. The force required to stretch a spring from a natural length of 1 foot to a length of 1.5 feet is 25 pounds. How much work in foot pounds is done in stretching the spring from 1.25 to 1.5 feet?
- 12. A tank contains water and has the shape described below. Find the work required to pump all of the water out of the tank. Assume that $\rho = 1000$ is the weight density of water (in kg/m^3) and g = 9.8 is the acceleration due to gravity (in m/s^2).

a.) The tank is a cylinder with height 6 m and radius 2 m. Assume the tank is full to a depth of 3 m (measuring from the bottom).

b.) The tank is a trough 8 m long. The end of the trough is a semi circle with radius 3 m, diameter at the top.

c.) The tank has the shape of a circular cone with height 3 m and base radius 2m. In addition, there is a 1 meter high spout from which the water exits the tank. Find the work required to pump all of the water out of the spout.

13. A cable that weighs 2 lb/ft is used to lift 800 lb of coal up a mineshaft 500 feet deep. Find the work done.

Section 7.5

14. Find the average value of $f(x) = x^2 + 1$ over the interval [-1, 2] and find the value of c that satisfies the Mean Value Theorem for integrals. Construct a rectangle whos area is equivalent to the area under the graph of f(x) over the interval [-1, 2].

Section 8.1

15.
$$\int x^{2} \ln x \, dx$$

16.
$$\int_{0}^{1} \frac{x}{e^{3x}} \, dx$$

17.
$$\int x \cos(2x) \, dx$$

18.
$$\int \arcsin x \, dx$$

19.
$$\int x^{5} e^{x^{3}} \, dx$$

20.
$$\int \cos x \ln(\sin x) \, dx$$

Section 8.2

21.
$$\int \sin^2 x \cos^3 x \, dx$$

22.
$$\int_0^{\pi/4} \tan^2 x \sec^4 x \, dx$$

23.
$$\int \sin^5 x \, dx$$

24.
$$\int \cos^2 4x \, dx$$

25.
$$\int \cos^2 x \tan^3 x \, dx$$

26.
$$\int \tan^5 x \sec^3 x \, dx$$

27.
$$\int \frac{\sec^4 x}{\tan^7 x} \, dx$$

28. $\int \sec^3 x \, dx$

HINT: Write $\sec^3 x = \sec x \sec^2 x$ and use integration by parts.

Section 8.3

$$29. \int \frac{dx}{x^2\sqrt{1-x^2}}$$
$$30. \int_0^3 x^3\sqrt{x^2+9} \, dx$$
$$31. \int \sqrt{4-9x^2} \, dx$$
$$32. \int \frac{dx}{\sqrt{x^2+4x}}$$
$$33. \int_0^2 \frac{x^2 \, dx}{\sqrt{x^2+4}}$$

Section 8.4

34.
$$\int_{2}^{3} \frac{dx}{(x-1)(x+2)}$$

35.
$$\int \frac{x+1}{x^{2}-4} dx$$

36.
$$\int \frac{2x^{2}-x+4}{x^{3}+4x} dx$$

$$\frac{x^2 - x + 4}{x^3 + 4x} \, dx$$