Fall 2005 Math 152

Night Before Drill;
courtesy: Amy Austin
Review Exercises: Sections 10.1-10.9

Section 10.1

1. Determine whether the following sequences converge or diverge. If the sequence converges, find the limit. If the sequence diverges, explain why.
a.) $a_{n}=\frac{5 \cos n}{n}$
b.) $a_{n}=3+\frac{(-1)^{n}}{n}$
c.) $a_{n}=\arccos \left(\frac{(n+1)!}{(n+3)!}\right)$
d.) $a_{n}=\frac{(\arctan n)^{5}}{n^{2}}$

Section 10.2

2. Find the sum of the following series.
a.) $\sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+2}\right)$
b.) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
c.) $\sum_{n=1}^{\infty} 5\left(\frac{2}{7}\right)^{n}$
d.) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}+3^{n}}{4^{n}}$
e.) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2 n}}{5^{n+1}}$
f.) $5-\frac{5}{2}+\frac{5}{4}-\frac{5}{8}+\frac{5}{16}-\ldots+\ldots$
3. If the $n t h$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=\frac{n-1}{n+1}$, find a_{n} and the sum of the series $\sum_{n=1}^{\infty} a_{n}$.

Section 10.3 and 10.4

4. Determine whether the following series converge or diverge. You must name the test, and apply the test completely and correctly.
a.) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$
b.) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n+1}$
c.) $\sum_{n=1}^{\infty} \frac{(n+1)(-3)^{n}}{\sqrt{n} 4^{n}}$
d.) $\sum_{n=2}^{\infty} \frac{(-10)^{n-1} n^{2}}{(2 n-3)!}$
e.) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{n^{2}+1}$
f.) $\frac{3}{5}-\frac{3}{6}+\frac{3}{7}-\frac{3}{8}+\frac{3}{9}-\ldots+\ldots$
5. Determine whether the following series converge or diverge. For those that converge, determine whether they are absolutely convergent.
a.) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{3 n-1}$
b.) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{3}+1}$
c.) $\sum_{n=1}^{\infty} \frac{2}{n^{3}}$
d.) $\sum_{n=1}^{\infty} \frac{(-10,000)^{n} n!}{(2 n+1)!}$
6. Use S_{10} to estimate the sum of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$. Give an estimate on the remainder.
7. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$.
a.) Use the first 5 terms to estimate the sum.
b.) Estimate the error in the approximation s_{5} to the sum of the series.
8. How many terms of the series do we need to add in order to find the sum to the indicated accuracy? $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!},\left(\right.$ error $\left.<\frac{1}{100}\right)$.

Section 10.5

9. For the following power series, find the radius and interval of convergence.
a.) $\sum_{n=0}^{\infty} \frac{(\pi x)^{n}}{n^{2}+2}$
b.) $\sum_{n=0}^{\infty} \frac{(2 x-1)^{n}}{n!4^{n}}$
c.) $\sum_{n=1}^{\infty} \frac{(2 n-1)!(x+2)^{n-1}}{5^{n-1}}$
d.) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{\sqrt{n}}$
10. Suppose it is known that $\sum_{n=0}^{\infty} c_{n} x^{n}$ is convergent when $x=4$ and divergent when $x=6$. What can be said about the convergence or divergence of the following series:
a.) $\sum_{n=0}^{\infty} c_{n} 8^{n}$
b.) $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
c.) $\sum_{n=0}^{\infty} c_{n}(-4)^{n}$
d.) $\sum_{n=0}^{\infty} c_{n}(5)^{n}$

Section 10.6

11. Find a power series for the following functions and find the corresponding radius of convergence.
a.) $f(x)=\frac{1}{1-x}$
b.) $f(x)=\frac{1}{4+x^{2}}$
c.) $f(x)=\ln (2-x)$
d.) $f(x)=\frac{\arctan x}{x}$
e.) $f(x)=\frac{x}{\left(x^{2}+1\right)^{2}}$
12. Write $\int_{0}^{0.5} \frac{1}{1+x^{4}} d x$ as an infinite series.

Section 10.7

13. Find the Taylor Series for $f(x)=e^{4 x}$ at $x=-1$.
14. Find the first three nonzero terms of the Taylor Series for $f(x)=\frac{1}{x^{2}}$ centered at $x=3$.
15. Find a Maclaurin series for $\int \frac{\cos \left(x^{2}\right)}{x} d x$
16. Express $\int_{0}^{1} e^{-x^{2}} d x$ as an infinite series. Use the first 2 terms of this series to approximate the sum and estimate the error.
17. Find the coefficient of $(x-4)^{3}$ in the Taylor Series for the function $f(x)=\sqrt{x}$ at $a=4$.
18. Consider $f(x)=\frac{\sin x-x+\frac{1}{6} x^{3}}{x^{5}}$. This function can be expressed as a series, by using the known Maclaurin series for $\sin x$. Find the first four nonzero terms of this series.

Section 10.9

For the problems 16-17, answer the following questions:
a.) Find $T_{n}(x)$ at the given value of a. Also, find the remainder term.
b.) Use Taylor's Inequality to estimate the accuracy of the approximation $T_{n}(x)$ for x in the given interval.
19. $f(x)=\frac{2}{x^{2}}, n=4, a=2,1 \leq x \leq 2.5$
20. $f(x)=\sqrt{1+x}, n=2, a=1,0 \leq x \leq 1.1$

