Fall 2005 Math 152

courtesy: Amy Austin (covering section 10.7, 10.9)

Section 10.7

- 1. Find the Taylor Series for $f(x) = \frac{1}{x}$ at x = 2 and the associated interval of convergence.
- 2. Find the Taylor Series for $f(x) = e^{-2x}$ at x = 1.
- 3. Find the Maclaurin series for $f(x) = e^x$ and the associated interval of convergence.
- 4. Find the Maclaurin series for $f(x) = \sin x$ and the associated interval of convergence.
- 5. Use a known MacLaurin series derived in this section to obtain a Maclaurin Series for:
 - a.) $f(x) = \cos(2x)$

b.)
$$f(x) = x^2 e^{3x}$$

- c.) $f(x) = \sin(x^2)$
- 6. Evaluate $\int \frac{\sin 2x}{x} dx$ as an infinite series.
- 7. Use series to approximate $\int_0^{0.5} \cos(x^2) \, dx$ with error less than 10^{-3} .

Section 10.9

- 8. Find the third degree Taylor Polynomial for $f(x) = \sqrt{x}$ at x = 4.
- 9. Find the second degree Taylor Polynomial for $f(x) = \ln x$ at x = 1. Using Taylor's Inequality, find an upper bound on the remainder in using $T_2(x)$ to approximate $f(x) = \ln x$ for $0.5 \le x \le 2$.
- 10. Find the fourth degree Taylor Polynomial for $f(x) = \cos x$ at $x = \frac{\pi}{3}$. Using Taylor's Inequality, find an upper bound on the remainder is using $T_4(x)$ to approximate $f(x) = \cos x$ for $0 \le x \le \frac{2\pi}{3}$.