Fall 2005 Math 152

courtesy: Amy Austin
(covering section 10.7, 10.9)

Section 10.7

1. Find the Taylor Series for $f(x)=\frac{1}{x}$ at $x=2$ and the associated interval of convergence.
2. Find the Taylor Series for $f(x)=e^{-2 x}$ at $x=1$.
3. Find the Maclaurin series for $f(x)=e^{x}$ and the associated interval of convergence.
4. Find the Maclaurin series for $f(x)=\sin x$ and the associated interval of convergence.
5. Use a known MacLaurin series derived in this section to obtain a Maclaurin Series for:
a.) $f(x)=\cos (2 x)$
b.) $f(x)=x^{2} e^{3 x}$
c.) $f(x)=\sin \left(x^{2}\right)$
6. Evaluate $\int \frac{\sin 2 x}{x} d x$ as an infinite series.
7. Use series to approximate $\int_{0}^{0.5} \cos \left(x^{2}\right) d x$ with error less than 10^{-3}.

Section 10.9

8. Find the third degree Taylor Polynomial for $f(x)=\sqrt{x}$ at $x=4$.
9. Find the second degree Taylor Polynomial for $f(x)=\ln x$ at $x=1$. Using Taylor's Inequality, find an upper bound on the remainder in using $T_{2}(x)$ to approximate $f(x)=\ln x$ for $0.5 \leq x \leq 2$.
10. Find the fourth degree Taylor Polynomial for $f(x)=\cos x$ at $x=\frac{\pi}{3}$. Using Taylor's Inequality, find an upper bound on the remainder is using $T_{4}(x)$ to approximate $f(x)=\cos x$ for $0 \leq x \leq \frac{2 \pi}{3}$.
