Fall 2005 Math 152

Week in Review 2

courtesy: Amy Austin
(covering sections 7.2-7.3)

Section 7.2 and 7.3

1. Find the volume of the solid obtained by rotating the region bounded by the given curve(s) about the specified axis.
a.) $y=\cos (x), x=0, x=\frac{\pi}{2}, y=0$ about the x axis. Note: $\cos ^{2} x=\frac{1}{2}(1+\cos (2 x))$.
b.) $y=\ln x, y=0, y=1, x=0$ about the y-axis.
c.) $y=\frac{1}{x}, y=0, x=1, x=10$. Rotate around the y-axis.
d.) $y^{2}=x, x=0, y=2, y=5$. Rotate around the x-axis.
e.) $y=x^{2}, y=0, x=1, x=2$. Rotate around the line $x=4$.
f.) $y=\cos x, y=0, x=0, x=\frac{\pi}{2}$. Rotate around the line $y=1$. Set up both a $d x$ and $d y$ integral that gives the volume. Do not evaluate the integral.
g.) $y=e^{x}, y=0, x=0, x=1$ about the x-axis.
h.) $y=2 x-x^{2}, y=0$. Rotate around the y-axis.
i.) $x=\sqrt[4]{y}, x=0, y=16$. Rotate around the x-axis.
2. Find the volume of the solid described below:

The base of S is the parabolic region
$\left\{(x, y) \mid x^{2} \leq y \leq 1\right\}$ and cross sections perpendicluar to the y axis are equilateral triangles.

