Fall 2005 Math 152

Week in Review 7

courtesy: Amy Austin
(covering sections 9.3-9.5)

Section 9.3

1. Find the length of the curve $y=\frac{1}{3} x^{\frac{3}{2}}, 0 \leq x \leq \frac{1}{4}$.
2. Find the length of the curve $x=\ln (\cos y)$,
$0 \leq y \leq \frac{\pi}{4}$.
3. Find the length of the parametric curve $x=3 t-t^{3}$, $y=3 t^{2}, 0 \leq t \leq 2$.

Section 9.4

4. Find the surface area obtained by revolving the given curve about the indicated axis.
a.) $y=x^{3}, 0 \leq x \leq 2$ about the x axis.
b.) $y^{2}=x+1,1 \leq y \leq 4$ about the x axis.
c.) $y=x^{2}+4,0 \leq x \leq 1$, about the y axis.
d.) $y=\sqrt{x}, x=1, x=4$, about the x axis.
e.) $x=e^{2 y}, 0 \leq y \leq 1 / 2$, about the y axis. Set up a $d x$ integral and a $d y$ integral. Do not evaluate either integral.
f.) $x=\cos (2 t), y=\sin (2 t), 0 \leq t \leq \frac{\pi}{4}$ about the y axis. Do the same about the x axis.

Section 9.5

5. Find the center of mass of the system consisting of the masses $2 \mathrm{~g}, 15 \mathrm{~g}, 4 \mathrm{~g}$, and 1 g located at the points $x=-4, x=1, x=5$, and $x=10$ along the x axis, respectively.
6. Find the centroid of the system consisting of the masses $1 \mathrm{~g}, 3 \mathrm{~g}$ and 7 g located at the points ($-2,3$), $(5,1)$ and $(6,-3)$, respectively.
7. Find the centriod (x-coordinate only) of the region bounded by $y=e^{2 x}, x=0, x=1$ and $y=0$.
8. Find the centriod (x - coordinate only) of the quarter circle $x^{2}+y^{2}=9,0 \leq x \leq 3$.
9. Find the centroid (x - coordinate only) of the region bounded by $y=x^{2}$ and $y=2 x$.
