Fall 2005 Math 152

Week in Review 7 courtesy: Amy Austin (covering sections 9.3-9.5)

Section 9.3

- 1. Find the length of the curve $y = \frac{1}{3}x^{\frac{3}{2}}, 0 \le x \le \frac{1}{4}$.
- 2. Find the length of the curve $x = \ln(\cos y)$, $0 \le y \le \frac{\pi}{4}$.
- 3. Find the length of the parametric curve $x = 3t t^3$, $y = 3t^2$, $0 \le t \le 2$.

Section 9.4

- 4. Find the surface area obtained by revolving the given curve about the indicated axis.
 - a.) $y = x^3, 0 \le x \le 2$ about the x axis.
 - b.) $y^2 = x + 1, 1 \le y \le 4$ about the x axis.
 - c.) $y = x^2 + 4, 0 \le x \le 1$, about the y axis.
 - d.) $y = \sqrt{x}, x = 1, x = 4$, about the x axis.
 - e.) $x = e^{2y}$, $0 \le y \le 1/2$, about the y axis. Set up a dx integral and a dy integral. Do not evaluate either integral.

f.) $x = \cos(2t), y = \sin(2t), 0 \le t \le \frac{\pi}{4}$ about the y axis. Do the same about the x axis.

Section 9.5

- 5. Find the center of mass of the system consisting of the masses 2 g, 15 g, 4 g, and 1 g located at the points x = -4, x = 1, x = 5, and x = 10 along the x axis, respectively.
- Find the centroid of the system consisting of the masses 1 g, 3 g and 7 g located at the points (-2, 3), (5, 1) and (6, -3), respectively.
- 7. Find the centroid (x-coordinate only) of the region bounded by $y = e^{2x}$, x = 0, x = 1 and y = 0.
- 8. Find the centroid (x coordinate only) of the quarter circle $x^2 + y^2 = 9, 0 \le x \le 3$.
- 9. Find the centroid (x coordinate only) of the region bounded by $y = x^2$ and y = 2x.