Fall 2005 Math 152

courtesy: Amy Austin (covering sections 10.1, 10.2)

Section 10.1

1. Find the limit of the following sequences, if it exists. If the sequence diverges, state why.

a.)
$$a_n = \frac{n}{\sqrt{n+2}}$$

b.) $a_n = \ln(n) - \ln(3n+1)$
c.) $a_n = \frac{(-1)^n n}{n^2 + 1}$
d.) $a_n = \frac{(-1)^n n^2}{n^2 + 1}$
e.) $a_n = \frac{\ln n}{n}$

n

2. Suppose $\{a_n\}$ was given to be a convergent sequence, $a_1 = 2$, and $a_{n+1} = \frac{1}{3 - a_n}$, find:

a.) a_4

- b.) the limit of the sequence.
- 3. Determine whether the following sequences are increasing, decreasing, or non monotonic:

a.)
$$a_n = \frac{1}{n^5}$$

b.) $a_n = \frac{n^2 + 4n + 5}{n^2}$
c.) $a_n = \frac{\ln n}{n}$
d.) $a_n = \cos(n\pi)$

Section 10.2

4. Find the first few partial sums of the series

 $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Try to determine whether they converge/diverge.

5. Suppose $\sum_{n=1}^{\infty} a_n$ is a convergent series and $s_n = 5 + \frac{n}{2n+3}$ is a formula for the nth partial sum. What is the sum of the series? 6. Find the sum of the following series. If it diverges, support your answer.

a.)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n+5} - \frac{1}{n+6} \right)$$

b.)
$$\sum_{n=2}^{\infty} \ln\left(\frac{n}{n+1}\right)$$

c.)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

d.)
$$\sum_{n=1}^{\infty} 2\left(\frac{1}{7}\right)^{n-1}$$

e.)
$$\sum_{n=1}^{\infty} (-5) \left(\frac{2}{3}\right)^{n}$$

f.)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} + 3^{n}}{5^{n}}$$

g.)
$$\sum_{n=2}^{\infty} \frac{(-1)^{n} 2^{n}}{3^{n+1}}$$

h.)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{2n}}{7^{n+1}}$$

i.)
$$4 + \frac{8}{5} + \frac{16}{25} + \frac{32}{125} + \dots$$