Spring 2013 Math 152

Week in Review 8

courtesy: Amy Austin
(covering section 10.7-10.9)

Section 10.7

1. Find the Taylor Series for f centered at -4 if $f^{(n)}(-4)=\frac{(-2)^{n} n!}{7^{n}(n+5)}$.
2. Find the Taylor Series for $f(x)=\frac{1}{x}$ at $x=3$ and the associated radius of convergence.
3. Find the Taylor Series for $f(x)=x e^{x}$ centered at 3 . What is the associated radius of convergence?
4. Find the Maclaurin series for $f(x)=e^{x}$ and the associated radius of convergence.
5. Find the Maclaurin series for $f(x)=\sin x$ and the associated radius of convergence.
6. Find the Maclaurin series for $f(x)=\cos x$ and the associated radius of convergence.
7. Use a known MacLaurin series derived in this section to obtain a Maclaurin Series for:
a.) $f(x)=\cos \left(x^{3}\right)$
b.) $f(x)=x e^{-x}$
c.) $f(x)=\sin \left(\frac{x}{2}\right)$
8. Express $\int \frac{\sin 2 x}{x} d x$ as an infinite series.
9. Use series to approximate $\int_{0}^{0.5} \cos \left(x^{2}\right) d x$ with error less than 10^{-3}
10. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{n+1} x^{3 n}}{n!}$.
11. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi)^{2 n+1}}{3^{2 n}(2 n)!}$
12. Find the sum of the series $5+\frac{25}{2}+\frac{125}{3!}+\frac{625}{4!}+\ldots$
13. Find the 20th derivative of $f(x)=e^{x^{2}}$ at $x=0$.

Section 10.9

14. Find the third degree Taylor Polynomial for $f(x)=\cos x$ at $x=\frac{\pi}{3}$.
15. Find the second degree Taylor Polynomial for $f(x)=\ln x$ at $x=2$. Using Taylor's Inequality, find an upper bound on the remainder in using $T_{2}(x)$ to approximate $f(x)=\ln x$ for $1 \leq x \leq 3.2$.
