Section 2.3
Compute the exact value of the following limits. If the limit does not exist, support your answer by evaluating left and right hand limits.

1. $\underbrace{\lim _{x \rightarrow 1}}\left(4 x^{3}-3 x+1\right)=4(1)^{3}-3(1)+1$

$$
=2
$$

2. $\lim _{x \rightarrow-5} \frac{x^{2}+5 x}{x+5}=\frac{0}{0} \rightarrow$ Algebral

$$
\begin{aligned}
\lim _{x \rightarrow-5} \frac{x(x+5)}{x+5} & =\lim _{x \rightarrow-5}(x) \\
& =-5
\end{aligned}
$$

3. $\lim _{x \rightarrow 2} \frac{(x-\sqrt{3 x-2}) \cdot(x+\sqrt{3 x-2})}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x^{2}-(3 x-2)^{2}}{\left(x^{2}-4\right)(x+\sqrt{3 x-2}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x-2)(x}{(x+2)(x-2} \\
& =\frac{1}{4(2+2)} \\
& =\frac{1}{16}
\end{aligned}
$$

4. $\lim _{h \rightarrow 0} \frac{(3+h)^{-1}-3^{-1}}{h}$

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h} \frac{(3+h)(3)}{(3+h)(3)} & =\lim _{h \rightarrow 0} \frac{3-(3+h)}{h(3+h)(3)} \\
& =\lim _{h \rightarrow 0} \frac{-k}{h(3+h)(3)}
\end{aligned}
$$

5. $\lim _{x \rightarrow 1} \frac{x-4}{x-1}=\frac{-3}{o} \frac{\text { nozero }}{\text { zero }}$

$$
=\lim _{h \rightarrow 0} \frac{-1}{(3+h)(3)}
$$

$\lim _{x \rightarrow 1^{+}} \frac{x-4}{x-1} \frac{-}{+}=-\infty$

$$
=-\frac{1}{9}
$$

$\lim _{x \rightarrow 1^{-}} \frac{x-4}{x-1}-\infty \quad \lim _{x \rightarrow 1^{+}} \frac{x-4}{x-1} \neq \lim _{x \rightarrow 1^{-}} \frac{x-4}{x-1}$
6. $\lim _{x \rightarrow 3} f(x)$, where $f(x)= \begin{cases}x+5 & \text { if } x \leq 3 \\ x^{3}-3 & \text { if } x>3\end{cases}$
limit does not exist

- $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{3}-3\right)=24$

$$
\lim _{x \rightarrow 3^{+}} f(x) \neq \lim _{x \rightarrow 3^{-}} f(x)
$$

- $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(x+5)=8 \quad$ limit does not exist

$$
\begin{aligned}
& \text { warm up: } \lim _{x \rightarrow 4} \frac{x-4}{|x-4|}\{\quad-(x-4) \xrightarrow[4]{4}+\leftarrow x-4 \\
& \text { - } \lim _{x \rightarrow 4^{+}} \frac{x-4}{|x-4|}=\lim _{x \rightarrow 4^{+}} \frac{x-4}{x-4}=1 \quad \text { graph of }|x-4| \\
& |x-4|=\left\{\begin{array}{cl}
x-4 & x \geqslant 4 \\
-(x-4) & x<4
\end{array}\right. \\
& \begin{array}{l}
\lim _{x \rightarrow 4^{-}} \frac{x-4}{|x-4|}=\lim _{x \rightarrow 4^{-}} \frac{x-4}{-(x-4)}=-1 \\
\text { thus } \lim _{x \rightarrow 4} \frac{x-4}{|x-4|} \text { one } \lim _{x \rightarrow 2} \frac{x^{2}-4}{|x-2|} \\
\text { graph of }|x-2| \\
\text { gr-4) } x<4
\end{array} \\
& \lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+2)}{|x-2|} \\
& \lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+2)}{x-2}=4 \quad \therefore \lim _{x \rightarrow 2} \frac{x^{2}-4}{|x-2|} d n e \\
& \text { - } \lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+2)}{|x-2|}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x+2)}{-(x-2)}=-4 \\
& \text { Graph of } \frac{(x-2)(x+2)}{|x-2|} \\
& =\left\{\begin{array}{cc}
x+2 & x>2 \\
-(x+2) & x<2
\end{array}\right. \\
& { }^{-\infty} \Gamma^{\infty} \\
& \text { 7. } \lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)=-\infty-\infty=-\infty \\
& \text { Aside: } \lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}\right)=-\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{1}{|x|}=\infty \\
& \text { if } f(x) \leq g(x) \leq h(x) \text { for all } x \\
& \text { in an interval containing a } \\
& \text { and } \lim _{x \rightarrow a} f(x)=L \quad \text { Then } \lim _{x \rightarrow a} g(x)=L \\
& \lim _{x \rightarrow a} h(x)=L \\
& x \rightarrow a \\
& \text { 9. } \lim _{x \rightarrow 1} f(x) \text { if it is known that } 4 x \leq f(x) \leq x+3 \text { for } \\
& \text { all } x \text { in }[0,2] \text {. } \\
& \text { squeeze theorem: } \left.\lim _{x \rightarrow 1}(4 x)=4\right\} \text { same! } \\
& \lim _{x \rightarrow 1}(x+3)=4 \\
& x \rightarrow 1 \\
& \therefore \lim _{x \rightarrow 1} f(x)=4
\end{aligned}
$$

Section 2.5
10. Referring to the graph, explain why the function $f(x)$ is or is not continuous (you decide which) at $x=-1, x=3, x=5, x=-4$ and $x=7$. For the values of x where $f(x)$ is not continuous, is it continuous from the right, left or neither? In addition, for each discontinuity, is it a jump discontinuity, infinite discontinuity or a removable discontinuity?

at $\quad \begin{aligned} x=-1: \quad & \lim _{x \rightarrow-1^{+}} f(x)=-3 \\ & \lim _{x \rightarrow-1^{-}} f(x)=-2\end{aligned}$
$f(x)$ is continuous
at $x=a$ if all of the following is true
(1) $f(a)$ must exist
(2) $\lim _{x \rightarrow a} f(x)$ must exist
(3) $\lim _{x \rightarrow a} f(x)=f(a)$
not equal $\lim _{x \rightarrow-1} f(x)$ die, thus $x \rightarrow-1$ not continuous at $x=-1$
at $x=3: f(3)$ is not defined thus not continuous at $x=3$.
at $x=5: \lim _{x \rightarrow 5^{+}} f(x)=1, \lim _{x \rightarrow 5^{-}} f(x)=3, \lim _{x \rightarrow 5^{-}} f(x)$ ane
at $x=7: f(7) d n e$
11. Sketch the graph of $f(x)$ and determine where the function

$$
f(x)= \begin{cases}2-x & \text { if } x<-1 \\ 4 x & -1 \leq x<1 \\ 3 & x=1 \\ 5-x & \text { if } x>1\end{cases}
$$

not continuous at $x=-1$

$$
\text { because } \lim _{x \rightarrow-1} f(x) \text { done }
$$

not continuous at $x=1$ because $\lim _{x \rightarrow 1} f(x)=4$
but $f(1)=3$
12. Which of the following functions has removable discontinuity at $x=a$? If the discontinuity is removable, find a function g that agrees with f for $x \neq a$ and is continuous at $x=a$. Note: f has removable discontinuity at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists and $f(x)$ can be redefined so that $\lim _{x \rightarrow a} f(x)=f(a)$ (thereby removing the discontinuity).
(a) $f(x)=\frac{x^{2}-4}{x-2}, x=2 . \quad f(2)$ does not exist because $x=2$ is not in the domain. not continuous at $x=2$.
is the continuity removable?

not continuous at $x=1$ because $f(1)$ done. $f(x)=x+2$

$$
\lim _{x \rightarrow 1} \frac{1}{x-1} \text { die because } \lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=\infty
$$

not

$$
\text { removable! } \lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty
$$

(c) $f(x)=\left\{\begin{array}{cc}x^{2} & \text { if } x<1 \\ 2 x+4 & \text { if } x \geq 1\end{array}, x=1\right.$

13. If $f(x)=\frac{x+2}{x^{2}+5 x+6}$, find all values of $x=a$ where the function is discontinuous. For each discontinuity, find the limit as x approaches a, if the limit exists. If the limit does not exist, support your answer by evaluating left and right hand limits. equation $g(x)=0$.

$$
g(x)=x^{5}-2 x^{3}+x^{2}+2
$$

To show there is a solution to $g(x)=0$

$$
\text { "get on either side of } y=0 \text { " }
$$

$$
g(0)=2>0
$$

$$
\begin{aligned}
& 9(-1)=-1+2+1+2=4>0 \\
& g(-2)=-32+16+4+2=-10<0
\end{aligned}
$$

$$
\begin{aligned}
& g(0)>0 \\
& g(-2)<0
\end{aligned} \quad g(x)=0 \text { exists on }[-2,0]
$$

$$
\begin{aligned}
& f(x)=\frac{x+2}{(x+2)(x+3)} \quad \begin{array}{l}
\text { not continuous at } \\
x=-2 \text { of } x=-3
\end{array} \\
& \text { at } x=-2: \lim _{x \rightarrow-2} \frac{x+2}{(x+2)(x+3)}=1 \\
& \operatorname{at} x=-3: \lim _{x \rightarrow-3} \frac{x+2}{(x+2)(x+3)}=\lim _{x \rightarrow-3} \frac{1}{x+3} d \cap e \\
& \lim _{x \rightarrow-3^{+}} \frac{1}{x+3}=00 \\
& \lim _{x \rightarrow-3^{-}} \frac{1}{x+3}=-\infty \\
& \text { 14. Suppose it is known that } f(x) \text { is a continuous fund- } \\
& \text { tron defined on the interval }[1,5] \text {. Suppose further } \\
& \text { it is given that } f(1)=-3 \text { and } f(5)=6 \text {. Give a } \\
& \text { graphical argument that there is at least one sol- } \\
& \text { timon to the equation } f(x)=1 . \longleftarrow N=1 \\
& \begin{array}{l}
\bar{F} \\
F \\
\hline
\end{array} \\
& (1,-3) \\
& f(5)>1 \\
& f(1)<1 \\
& \text { there is a solution } \\
& \text { to } f(x)=1 \text { on }[1,5] \\
& \text { 15. If } g(x)=x^{5}-2 x^{3}+x^{2}+2 \text {, use the Intermediate } \\
& \text { Value Theorem to find an interval which contains } \\
& \text { a root of } g(x) \text {, that is contains a solution to the } \\
& \text { intermediate value } \\
& \text { theorem: If } f(x) \text { is } \\
& \text { continuous on }[a, b] \\
& \text { if } N \text { is any number } \\
& \text { between } f(a) \text { and } f(b) \text {, } \\
& \text { Then there exist a value } \\
& \text { of } c \text { on }[a, b] \\
& \text { so that } f(c)=N
\end{aligned}
$$

16. Find the values of c and d that will make

$$
f(x)= \begin{cases}2 x & \text { if } x<1 \\ c x^{2}+d & \text { if } 1 \leq x \leq 2 \leftarrow \\ 4 x & \text { if } x>2\end{cases}
$$

continuous on all real numbers. Once the value of c and d is found, find $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 2} f(x)$.

16. Find the values of c and d that will make

$$
\begin{aligned}
& \qquad f(x)=\left\{\begin{array}{ll}
2 x & \text { if } x<1 \\
c x^{2}+d & \text { if } 1 \leq x \leq 2 \\
4 x & \text { if } x>2
\end{array} \rightarrow f(x)= \begin{cases}2 x & x<1 \\
2 x^{2} & 1 \leq x \leq 2 \\
4 x & x>2\end{cases} \right. \\
& \text { continuous on all real numbers. Once the value of } \\
& c \text { and } d \text { is found, find } \lim _{x \rightarrow 1} f(x) \text { and } \lim _{x \rightarrow 2} f(x) \text {. }
\end{aligned}
$$

$$
\lim _{x \rightarrow 1} f(x)=2 ; \lim _{x \rightarrow 2} f(x)=8
$$

Section 2.6
17. Compute the following limits:
a.) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-6 x^{4}}{2 x^{3}-9 x+1}=\lim _{x \rightarrow \infty} \frac{\chi^{4}\left(\frac{4}{x}-6\right)}{\chi^{3 /}\left(2-\frac{9}{x^{2}}+\frac{1}{x^{3}}\right)}$
Factor Factor
out the power
higher pore
of or tom
top b.) $\lim _{t \rightarrow-\infty} \frac{t^{9}-4 t^{10}}{t^{12}+2 t^{2}+1}$

$$
=\lim _{x \rightarrow \infty} \frac{x\left(\frac{4^{7}}{x}-6\right)}{2-\frac{9}{2 x^{2}}+\frac{17^{0}}{x^{3}}}=\frac{(\infty)(-6)}{2}=-\infty
$$

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty} \frac{t^{10}\left(\frac{1}{t}-4\right)}{t^{2} t^{\frac{1}{2}}\left(1+\frac{2}{t^{10}}+\frac{1}{t^{12}}\right)}=\lim _{t \rightarrow-\infty} \frac{\frac{1}{t}}{t^{2}}-4 \\
& t^{2}\left(1+\frac{2}{t^{10}}+\frac{1}{t^{12}}\right)
\end{aligned}
$$

c.) $\lim _{x \rightarrow \infty} \frac{4 x-6 x^{3}}{-2 x^{3}-9 x+1}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(\frac{4^{3}}{x^{2}}-6\right)}{x^{3}\left(-2-\frac{97^{0}}{x^{2}}+\frac{x^{0}}{x^{3}}\right)}=\frac{-6}{-2}=3$

$$
\text { d.) } \begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{2+x^{2}}}{4-7 x} \quad \text { note: } \sqrt{x^{2}}=|x|= \begin{cases}x, & x \geq 0 \\
-x, & x<0\end{cases} \\
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}\left(\frac{2}{x^{2}}+1\right)}}{x\left(\frac{4}{x}-7\right)}=\lim _{x \rightarrow \infty} \frac{|x| \sqrt{\frac{2}{x^{2}}+1}}{x\left(\frac{4}{x}-7\right)} \\
&=\lim _{x \rightarrow \infty} \frac{x \sqrt{\frac{27^{0}}{x^{2}}+1}}{x\left(\frac{4}{x}-7\right)} \\
& \text { here, }|x|=x \\
& \text { since } x \rightarrow+\infty \\
& 0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.) } \lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}+1}}{x-3} \\
& \begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}\left(5+\frac{1}{x^{2}}\right)}}{x\left(1-\frac{3}{x}\right)}=\lim _{x \rightarrow-\infty} \frac{|x| \sqrt{5+\frac{1}{x^{2}}}}{x\left(1-\frac{3}{x}\right)} \text { here, }|x|=-x \\
& \text { since } x \rightarrow-\infty \\
&=\lim _{x \rightarrow \sqrt{5+\frac{1}{x^{2}}}}
\end{aligned} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{5+\frac{1}{x^{2}}}}{x\left(1-\frac{3}{x}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{-\sqrt{5+\frac{1}{x^{2}}} 0}{1-\frac{3}{\not x}>0}=-\sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { f.) } \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+5 x+1}-x\right) \frac{\sqrt{\left(x^{2}+5 x+1\right)}+x}{\sqrt{x^{2}+5 x+1}+x}=\lim _{x \rightarrow \infty} \frac{x^{2}+5 x+1-x^{2}}{\sqrt{x^{2}+5 x+1}+x} \\
\text { conjugate! }
\end{array} \\
& =\lim _{x \rightarrow \infty} \frac{5 x+1}{\sqrt{x^{2}+5 x+1}+x}=\lim _{x \rightarrow \infty} \frac{x\left(5+\frac{1}{x}\right)}{\sqrt{x^{2}\left(1+\frac{5}{x}+\frac{1}{x^{2}}\right)}+x} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(5+\frac{1}{x}\right)^{x}}{} \quad \text { here, }|x|=x \\
& |x| \sqrt{1+\frac{5}{x}+\frac{1}{x^{2}}}+x \text { since } x \rightarrow+\infty \\
& =\lim _{x \rightarrow \infty} \frac{x\left(5+\frac{1}{x}\right)}{5 x \sqrt{1+\frac{5}{x}+\frac{1}{x^{2}}}+x}=\lim _{x \rightarrow \infty} \frac{x\left(5+\frac{1}{x}\right)^{8}}{x\left(\sqrt{1+\frac{5}{x}+\frac{1}{x^{2}}}+1\right)} \\
& \text { g.) } \lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+x+2}\right) \frac{x-\sqrt{x^{2}+x+2}}{x-\sqrt{x^{2}+x+2}} \\
& =5 \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(-1-\frac{2}{x}\right)}{x-\sqrt{x^{2}\left(1+\frac{1}{x}+\frac{2}{x^{2}}\right)}} \\
& \text { here, }|x|=-x \\
& \text { since } x \rightarrow-\infty \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(-1-\frac{2}{x}\right)}{x-\left(|x| \sqrt{\left.1+\frac{1}{x}+\frac{2}{x^{2}}\right)}\right.} \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(-1-\frac{2}{x}\right)}{x+x \sqrt{1+\frac{1}{x}+\frac{2}{x^{2}}}} \\
& =\lim _{x \rightarrow-\infty} \frac{x\left(-1-\frac{2 x^{0}}{x x}\right)}{x\left[1+\sqrt{1+\frac{1}{x x^{0}}+\frac{2 x^{0}}{2 x^{2}}}\right]} \\
& =\frac{-1}{2} \\
& \text { 18. Find all horizontal and vertical asymptotes of } \\
& f(x)=\frac{x^{3}}{x^{3}-x} \\
& f(x)=\frac{x^{3}}{x\left(x^{2}-1\right)} \text { aA: } x= \pm 1
\end{aligned}
$$

