SAMPLE EXAM I

To be worked Wednesday, 2/18, 7:30-9:30 pm BLOC 169

Part I - Multiple Choice

1. What is the slope of the line with parametric equations $x=2 t+3, y=7 t-2$?
a) $\frac{7}{2}$
b) $\frac{-2}{7}$
c) $\frac{3}{2}$
d) $\frac{-2}{3}$
e) $\frac{2}{7}$
2. What value of x makes the vectors $\langle 1, x\rangle$ and $\langle 3-4 x, 5\rangle$ perpendicular?
a) $x=-3$
b) $x=-1$
c) $x=0$
d) $x=1$
e) $x=3$
3. Which of the following gives parametric equations of the line passing through $(-1,1)$ and perpendicular to the line $x=4-3 t, y=5+t$?
a) $\mathbf{r}(t)=\langle-2-t,-2+t\rangle$
b) $\mathbf{r}(t)=\langle-1-t, 1-3 t\rangle$
c) $\mathbf{r}(t)=\langle-1+t, 1+3 t\rangle$
d) $\mathbf{r}(t)=\langle-2-3 t,-2-t\rangle$
e) both (b) and (c) are correct
4. $\lim _{x \rightarrow 4} \frac{2 x^{2}-32}{x-4}=$
a) 1
b) 0
c) 2
d) does not exist
e) 16
5. $\lim _{x \rightarrow 0^{+}} \frac{x^{2}-2 x}{x}=$
a) 0
b) 2
c) $-\infty$
d) ∞
e) -2
6. $\lim _{x \rightarrow 0^{-}} \frac{x^{2}-2 x}{|x|}=$
a) 0
b) 2
c) $-\infty$
d) ∞
e) 1
7. $\lim _{x \rightarrow 0^{+}} \frac{x-2}{x}=$
a) 0
b) -2
c) $-\infty$
d) ∞
e) 1
8. According to the Intermediate Value Theorem, the equation $x^{3}-2 x^{2}+x=-5$ has a solution in which of the following intervals?
a) $[-3,-2]$
b) $[2,3]$
c) $[-2,-1]$
d) $[-1,0]$
e) $[0,1]$
9. $\lim _{x \rightarrow 1} \frac{x+1}{(x-1)^{2}}=$
a) 0
b) does not exist
c) $-\infty$
d) ∞
e) 1
10. If $f(x)=\left\{\begin{array}{ll}5-\frac{2}{5} x & \text { if } x<5 \\ 3 & \text { if } 5<x<8 \\ 9-x & \text { if } x>8\end{array}\right.$, determine which of the following statements is true.
a) f is continuous at $x=5$
b) $\lim _{x \rightarrow 5} f(x)$ does not exist.
c) $\lim _{x \rightarrow 8^{+}} f(x)=3$
d) $\lim _{x \rightarrow 5} f(x)=3$
e) f is continuous for all values of x.
11. Find the work done by a force of 20 Newtons acting in the direction $N 25^{\circ} \mathrm{W}$ in moving an object 4 meters due west.
a) $20 \cos \left(25^{\circ}\right)$ Joules
b) $80 \cos \left(25^{\circ}\right)$ Joules
c) $80 \cos \left(65^{\circ}\right)$ Joules
d) $20 \cos \left(65^{\circ}\right)$ Joules
e) None of the avove
12. Given the points $P(4,-4)$ and $Q(5,-2)$, find a unit vector in the direction of the vector starting at P and ending at Q.
a) $\frac{1}{\sqrt{5}} \mathbf{i}+\frac{2}{\sqrt{5}} \mathbf{j}$
b) $\frac{140}{\sqrt{29}} \mathrm{i}-\frac{56}{\sqrt{29}} \mathrm{j}$
c) $9 \mathbf{i}-6 \mathbf{j}$
d) $\mathbf{i}+2 \mathbf{j}$
e) $\frac{9}{\sqrt{117}} \mathbf{i}-\frac{6}{\sqrt{117}} \mathbf{j}$
13. $\lim _{x \rightarrow \infty} \frac{6 x^{2}-x-3}{2+3 x-3 x^{2}}=$
a) 3
b) 1
c) ∞
d) -2
e) $-\frac{3}{2}$
14. The points $A(-1,2), B(2,1)$, and $C(0,5)$ form a triangle. Find angle C.
a) 45°
b) 30°
c) 135°
d) 150°
e) 90°
15. The parametric curve determined by the equations $x=\sin t, y=\cos ^{2} t, 0 \leq t \leq \frac{\pi}{2}$ forms:
a) part of a parabola
b) part of a hyperbola
c) part of a circle
d) line segment
e) none of the above
16. Find all vertical asymptotes for the curve $\frac{x-2}{x^{2}-4}$
a) $x=0$
b) $x=-2$ and $x=2$
c) $x=-2$ only
d) $x=2$ only
e) There are no vertical asymptotes.
17. Find the components of the vector \mathbf{r} given that the magnitude of \mathbf{r} is 7 and \mathbf{r} creates an angle of 120° with the positive x axis.
a) $\mathbf{r}=\left\langle\frac{7}{2}, \frac{7 \sqrt{3}}{2}\right\rangle$
b) $\mathbf{r}=\left\langle\frac{7 \sqrt{3}}{2}, \frac{7}{2}\right\rangle$
c) $\mathbf{r}=\left\langle-\frac{7 \sqrt{3}}{2}, \frac{7}{2}\right\rangle$
d) $\mathbf{r}=\left\langle-\frac{7}{2},-\frac{7 \sqrt{3}}{2}\right\rangle$
e) $\mathbf{r}=\left\langle-\frac{7}{2}, \frac{7 \sqrt{3}}{2}\right\rangle$

Part II - Work Out Problems

All answers must be algebraically supported to receive full credit.
18. If two forces given by $\mathbf{F}_{\mathbf{1}}=\langle 1,5\rangle$ and $\mathbf{F}_{\mathbf{2}}=\langle 4,1\rangle$ are acting on an object sitting at the origin, find the resultant force as well as its magnitude and direction.
19. Use the limit definition to find the derivative, $f^{\prime}(x)$, of $f(x)=\sqrt{2-3 x}$. Next, find the slope of the tangent line to the graph of $f(x)$ at $x=-1$.
20. Find the vector projection and the scalar projection of $\langle-6,-5\rangle$ onto $\langle 1,-4\rangle$.
21. Find the distance from the point $(2,3)$ to the line $y=4 x+5$
22. Evaluate $\lim _{x \rightarrow 3} \frac{|x-3|}{x^{2}-9}$, if it exists. If the limit does not exist, support your answer by evaluating left and right hand limits.
23. Find values of a and b which make $f(x)$ continuous for all x, if possible. If not possible,explain why.

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x<1 \\ a x^{2}-b x+3 & \text { if } 1 \leq x<2 \\ 2 x-a+b & \text { if } x \geq 2\end{cases}
$$

24. Find $\lim _{x \rightarrow 3} \frac{\frac{1}{x+4}-\frac{1}{7}}{x-3}$
25. Find $\lim _{x \rightarrow \infty} \frac{\sqrt{10 x^{2}-5}}{2-3 x}$ and $\lim _{x \rightarrow-\infty} \frac{\sqrt{10 x^{2}-5}}{2-3 x}$
