Spring 2015 Math 151

Week in Review 5

courtesy: Amy Austin
(Covering 3.5-3.8)

Section 3.5

1. Find the derivative of the following functions:
a.) $f(x)=\left(x^{3}+x+1\right)^{8}$
b.) $f(x)=\sqrt{x^{5}-\frac{3}{x^{2}}+\sin (x)-\sec (x)}$
c.) $f(x)=\frac{1}{\left(x^{2}+x-1\right)^{2}}$
d.) $h(x)=\tan \left(x^{2}\right)$
e.) $g(x)=\cos ^{3}\left(x^{2}+a^{2}\right)$
f.) $g(x)=\sin ^{3}\left(x^{2}\right)+\cot (\sin (2 x))$
g.) $f(x)=(2 x+1)^{5}(\sqrt{x}-x+3)^{7}$
h.) $h(x)=\frac{x}{\left(x^{5}+1\right)^{4}}$
2. Given $h=f \circ g, g(3)=6, g^{\prime}(3)=4, f^{\prime}(3)=2$, $f^{\prime}(6)=7$. Find $h^{\prime}(3)$.
3. Suppose that $F(x)=f\left(x^{4}\right)$ and $G(x)=(f(x))^{4}$. Also, suppose it is given that $f(2)=-1, f(16)=3$, $f^{\prime}(2)=-2$ and $f^{\prime}(16)=4$. Compute $F^{\prime}(2)$ and $G^{\prime}(2)$.
4. If $G(t)=(t+f(\tan 2 t))^{3}$, find an expression for $G^{\prime}(t)$.

Section 3.6

5. Find $\frac{d y}{d x}$ if $x^{4}-4 x^{2} y^{2}+y^{3}=0$
6. Find $\frac{d y}{d x}$ for $\cos (2 x)-\sin (x+y)=1$
7. Find the equation of the line tangent to

$$
x^{2}+y^{2}=2 \text { at }(1,1) .
$$

8. Regard y as the independent variable and x as the dependent variable, and use implicit differentiation to find $\frac{d x}{d y}$ for the equation $\left(x^{2}+y^{2}\right)^{2}=2 x^{2} y$.

Section 3.7

9. Find the angle between the tangent vector and the position vector for $\mathbf{r}(\mathbf{t})=\left\langle t^{2}, 2 t^{3}\right\rangle$ at the point where $t=-1$.
10. Find the vector and parametric equations of the line tangent to $\mathbf{r}(\mathbf{t})=\left\langle t^{3}+2 t, 4 t-5\right\rangle$ at the point where $t=2$.
11. Sketch the curve $\mathbf{r}(\mathbf{t})=\left\langle t^{2}, t\right\rangle$. Find the tangent and unit tangent vector to the curve at the point $(4,2)$. Draw the position and tangent vector along with the sketch of the curve at the point $(4,2)$.
12. Find the angle of intersection of the curves $\mathbf{r}_{1}(\mathbf{s})=\left\langle s-2, s^{2}\right\rangle$ and $\mathbf{r}_{\mathbf{2}}(\mathbf{t})=\left\langle 1-t, 3+t^{2}\right\rangle$

Section 3.8

13. Find $y^{\prime \prime}$ for $y=\sqrt{x^{2}+1}$.
14. If $\mathbf{r}(\mathbf{t})=\left\langle t^{3}, t^{2}\right\rangle$ represents the position of a particle at time t, find the angle between the velocity and the acceleration vector at time $t=1$.
15. Find the 98 th derivative of:
a.) $f(x)=\frac{1}{x^{2}}$
b.) $f(x)=\sin (3 x)$
