1. Evaluate $\log _{3} 108-\log _{3} 4=\log _{3}\left(\frac{108}{4}\right)$

$$
\log _{a} a^{x}=x
$$

$$
\begin{aligned}
& =\log _{3}(27) \\
& =\log _{3} 3^{3}=3
\end{aligned}
$$

$$
\log _{a}
$$

2. Solve for $x: \log (x+3)+\log (x)=1$

$$
10^{\prime}=(x+3)(x)
$$

$$
0=x^{2}+3 x-10
$$

$$
\begin{aligned}
& \log _{a} b=x \rightarrow a=b \\
& x \\
& x=15 \\
& x=2
\end{aligned}
$$

$$
\log (x+3)(x)=1 \quad \log b=x \rightarrow a=b
$$

$$
10=x^{2}+3 x
$$

$$
\begin{aligned}
& 0=x^{2}+3 x-10 \\
& 0=(x+5)(x-2) \longrightarrow \quad \begin{array}{l}
x \rightarrow 5 \\
x=2
\end{array} \text { extraneous }
\end{aligned}
$$

3. Solve for $x: \ln x-\ln (x+1)=\ln 2+\ln 3$

$$
\begin{array}{ll}
\ln \frac{x}{x+1}=\ln 6 & \log _{a} x=\log _{a} y \\
\frac{x}{x+1}=6 \\
x=6(x+1)
\end{array} \quad \begin{aligned}
& x=6 x+6 \\
& -5 x=6 \\
& x \rightarrow=\frac{6}{5} \\
& \text { then } x=y \\
& \text { no solution }
\end{aligned}
$$

4. Find $\lim _{x \rightarrow 2^{+}} \ln (\underbrace{x-2}_{\jmath})$
0^{+}

$$
=\ln \left(" 0^{\prime \prime}\right)-
$$

$$
=-\infty
$$

5. Find $\lim _{x \rightarrow \infty}[\log (\underbrace{2 x^{2}-1})-\log \left(3 x^{2}+6\right)]=\infty-\infty$ who knows!!

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}[\log (\underbrace{\left(\log \left(3 x^{2}+6\right)\right]}_{\substack{2 x^{2}-1}}=\infty-\infty \\
& \lim _{x \rightarrow \infty} \log \left(\frac{2 x^{2}-1}{3 x^{2}+6}\right)\left.=\log \left(\lim _{x \rightarrow \infty} \frac{2 x^{2}-1}{3 x^{2}+6}\right) \text { same degree }\right)^{\text {saficients }} \text { leading coefficient }
\end{aligned}
$$

6. What is the domain of $f(x)=\ln \left(x^{2}+2 x-8\right)$?

$$
\text { solve } x^{2}+2 x-8>0
$$

7. Find $f^{\prime}(x)$ for $f(x)=\ln \left(2 x^{2}-8\right)$

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

chain Rule:

$$
\begin{aligned}
\frac{d}{d x} \ln \left(2 x^{2}-8\right) & =\frac{1}{2 x^{2}-8} \frac{d}{d x}\left(2 x^{2}-8\right) \quad \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} \\
& =\frac{1}{2 x^{2}-8}(4 x) \\
& =\frac{4 x}{2 x^{2}-8}
\end{aligned}
$$

8. Find the derivative of $f(x)=2^{\cos x}+\log _{7}(3 x-1)^{*} \frac{d}{d x} a^{x}=a^{x} \ln a^{*}$

$$
f^{\prime}(x)=\left(2^{\cos x}\right)(\ln 2)(-\sin x)+\frac{1}{(3 x-1)(\ln 7)} \cdot 3^{*} \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

9. Find y^{\prime} for $y=(\cos x)^{\tan x}$

$$
\begin{aligned}
\text { Find } y^{\prime} \text { for } y & =(\cos x)^{\tan x} \tan x \\
\ln y & =\ln (\cos x)^{y} b^{y}=y \log b \\
\ln y & =\tan x \ln (\cos x) \\
\frac{1}{y} \frac{d y}{d x} & =\sec ^{2} x \ln (\cos x)+\tan x\left(\frac{-\sin x}{\cos x}\right) \\
\frac{d y}{d x} & =y\left[\sec ^{2} x \ln (\cos x)+\tan x(-\tan x)\right] \\
& =(\cos x)^{\tan x}\left[\sec ^{2} x \ln (\cos x)-\tan x\right]
\end{aligned}
$$

10. Find the slope of the tangent line to the curve

$$
\begin{aligned}
f(x)=x \ln (x) \text { at } x=e^{2} & & f^{\prime}\left(e^{2}\right) \\
f^{\prime}(x)=(1) \ln x+x\left(\frac{1}{x}\right) & & =\ln e^{2}+1 \\
f^{\prime}(x)=\ln x+1 & & =2+1=
\end{aligned}
$$

11. At a certain instant, 100 grams of a radioactive substance is present. After 4 years, 20 grams remain.

$$
e^{\ln a}=a
$$

$$
\begin{aligned}
& y(t)=y_{0} e^{k t} \quad y_{0}=\text { initial amount } y(4)=20 \\
& y_{0}=100 \quad \ln \frac{1}{5}=4 b \rightarrow b=\frac{1}{4} \ln \frac{1}{5} \\
& \left.\begin{array}{l}
\qquad \begin{array}{l}
\text { bt } \\
y(t)
\end{array}=100 \mathrm{e}
\end{array} \quad \longrightarrow \ln \frac{1}{5}=4 b \rightarrow \frac{1}{4} \ln \frac{1}{5}\right) t \\
& 20=100 e \\
& \frac{1}{5}=e^{4-b} \\
& =100 e \ln \left(\frac{1}{5}\right)^{\frac{t}{4}} \\
& =100 e \\
& \frac{t_{4}^{4}}{4} \\
& y(t)=100\left(\frac{1}{5}\right)
\end{aligned}
$$

b.) How much of the substance remains after 2.5 years?

$$
y(2.5)=100\left(\frac{1}{5}\right)^{\frac{2.5}{4}} \text { grams }
$$

a.) What is the half life of the substance?
at what time is $y(t)=\frac{1}{2} y_{0}=\frac{1}{2}(100)$?

$$
\begin{aligned}
\rightarrow \frac{1}{2} & =\left(\frac{1}{5}\right)^{\frac{t}{4}} \frac{t}{\frac{1}{4}} \\
\ln \frac{1}{2} & =\ln \left(\frac{1}{5}\right)^{2} \\
\ln \frac{1}{2} & =\frac{t}{4} \ln \frac{1}{5} \\
t & =\frac{4 \ln \frac{1}{2}}{\ln \frac{1}{5}} \text { years }
\end{aligned}
$$

12. A bowl of soup at temperature 180° is placed in a 70° room. If the temperature of the soup is 150°

$$
\begin{aligned}
& \text { after } 2 \text { minutes, when will the soup be an eatable } \\
& 100^{\circ} \text { ? } \\
& y(t)=\left(y_{0}-T\right) e^{k t}+T \\
& y(t)=(180-70) e^{k t}+70 \\
& y_{0}=\text { initial temp }=180^{\circ} \\
& T=\text { coom } \tan P=70^{\circ} \\
& y(2)=150^{\circ} \\
& \text { solve } y(t)=100^{\circ} \\
& y(t)=110 e^{k t}+70 \\
& 150=110 e^{k(2)}+70 \\
& \left(\frac{1}{2} \ln \frac{8}{11}\right) t \\
& 80=110 e^{2 k} \quad \rightarrow=\frac{1}{2} \ln \frac{8}{11} \\
& \frac{8}{11}=e^{2 k} \\
& \ln \frac{8}{11}=2-k \\
& y(t)=110\left(\frac{8}{11}\right)^{\frac{t}{2}}+70
\end{aligned}
$$

solve $y(t)=100$ for t

$$
\begin{aligned}
& \text { solve } y(t)=100 t / 2 \\
& 100=110\left(\frac{8}{11}\right)^{t / 2}+70 \\
& 30=110\left(\frac{8}{11}\right)^{t / 2} \\
& \frac{3}{11}=\left(\frac{8}{11}\right)^{t / 2} \\
& \ln \frac{3}{11}=\frac{t}{2} \ln \left(\frac{8}{11}\right) \\
& t=\frac{2 \ln \frac{3}{11}}{\ln \frac{8}{11}} \text { minutes }
\end{aligned}
$$

13. Express $\tan (\underbrace{\arcsin x})$ as an algebraic expression.

$$
\begin{aligned}
& \theta \\
& \text { let } \theta=\arcsin x \\
& \sin \theta=x \\
& \text { Find } \tan \theta \\
& \tan \theta=\frac{a \rho P}{a d j}=\frac{x}{\sqrt{1-x^{2}}} \\
& \sin \theta=\frac{x}{1}=\frac{\text { opp }}{\text { hyp }} \\
& \frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \arccos x=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \arctan x=\frac{1}{1+x^{2}} \\
& \text { 14. Find the derivative of } y=x^{2} \arccos \left(e^{3 x}\right) \\
& \text { product rule of } \\
& \text { chain rule } \\
& \frac{d y}{d x}=2 x \arccos \left(e^{3 x}\right)+x^{2}\left[-\frac{1}{\sqrt{1-\left(e^{3 x}\right)^{2}}} \cdot 3 e^{3 x}\right]
\end{aligned}
$$

15. Find the equation of the line tangent to $y=\tan ^{-1}(2 x-1)$ when $x=1$.
point: when $x=1, y=\tan ^{-1}(1)=\frac{\pi}{4} \quad$ point: $\left(1, \frac{\pi}{4}\right)$

$$
\begin{aligned}
m=\left.\frac{d}{d x}\right|_{x=1} & y \\
y-\frac{\tan ^{-1}(2 x-1)}{4}=1(x-1) & \frac{d y}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \\
y & =\frac{1}{1+(2 x-1)^{2}}(2) \\
m & =\frac{1}{2}(2)=1
\end{aligned}
$$

16. Compute the exact value of $\lim _{x \rightarrow \infty} \arccos \left(\frac{1+2 x}{5-4 x}\right)=\arccos \left(\lim _{x \rightarrow \infty} \frac{1+2 x}{5-4 x}\right)=\frac{2 \pi}{3}$

$$
\begin{aligned}
& \theta=\arccos \left(-\frac{1}{2}\right) \\
& \cos \theta=-\frac{1}{2}, \quad 0 \leq \theta \leq \pi \\
& \pi-\frac{\pi}{3}=\frac{2 \pi}{3}
\end{aligned}
$$

17. Compute $\sec (\underbrace{\arctan (-\sqrt{5})}_{\theta})$

$$
\begin{aligned}
& \theta=\arctan (-\sqrt{5}) \\
& \tan \theta=\frac{-\sqrt{5}}{1} \frac{\text { opp }}{\operatorname{adj}} \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}
\end{aligned}
$$

$$
\int_{-\sqrt{5}}^{1} \text { so, } \sec \theta=\frac{h y p}{a d j}=\frac{\sqrt{6}}{1}=\sqrt{6}
$$

18. Compute $\arcsin \left(\sin \frac{4 \pi}{3}\right)=\arcsin \left(-\frac{\sqrt{3}}{2}\right)=\frac{-\pi}{3}$

$$
\begin{aligned}
& \theta=\arcsin \left(-\frac{\sqrt{3}}{2}\right) \\
& \sin \theta=-\frac{\sqrt{3}}{2}, \quad-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}
\end{aligned}
$$

19. Find the limits of each of the following: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0} \triangleq \frac{\Delta r}{\infty}$
a) $\lim _{x \rightarrow 0} \frac{\arcsin (3 x)}{2 x} \frac{0}{0}$

$$
\begin{aligned}
& L=\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{1-9 x^{2}}}(3)}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

$$
\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}
$$

b) $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\frac{\infty}{\infty}$

$$
\begin{aligned}
=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)\left(\frac{2 \sqrt{x}}{1}\right) & =\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}} \\
& =0
\end{aligned}
$$

c)

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\sqrt{x}} & =\frac{-\infty}{0} \\
& =(-\infty)\left(\frac{1}{0}\right) \\
& =(-\infty)(\infty)=-\infty
\end{aligned}
$$

d.)

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2^{-}}(\sec x-\tan x) & =\lim _{x \rightarrow \frac{\pi}{}^{-}}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)=\infty-\infty=? \\
& =\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{1-\sin x}{\cos x} \frac{0}{0} \\
& =\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x}=\frac{0}{-1}=0
\end{aligned}
$$

indeterminate product is $(0)(\infty)$
"bring one down"
e.) $\lim _{x \rightarrow 1^{+}}(x-1) \tan (\pi x / 2)=(0)(\infty) \rightarrow$ bring one down!

OR

$$
\lim _{x \rightarrow 1^{+}} \frac{x-1}{\frac{1}{\tan \left(\frac{x \pi}{2}\right)}}
$$

$$
\lim _{x \rightarrow 1^{+}} \frac{x-1}{\cot \left(\frac{\pi x}{2}\right)}=\frac{0}{0}
$$

$$
=\lim _{x \rightarrow 1^{+}} \frac{1}{-\csc ^{2}\left(\frac{\pi x}{2}\right)\left(\frac{\pi}{2}\right)} \quad \csc \frac{\pi}{2}=\frac{1}{\sin \frac{\pi}{2}}=1
$$

$$
=\frac{-1}{\frac{\pi}{2}}=-\frac{2}{\pi}
$$

f.) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{4 x}=1^{\infty} \quad$ step 1: $y=\left(1+\frac{2}{x}\right)^{4 x}$

Step 2: $\ln y=\ln \left(1+\frac{2}{x}\right)^{4 x}$

$$
\ln y=4 x \ln \left(1+\frac{2}{x}\right)
$$

$$
\begin{aligned}
& \ln y=8 \\
& y=e^{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Step } 3 \\
& \begin{array}{l}
\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} 4 x \ln \left(1+\frac{2}{x}\right)= \\
4 x \ln \left(1+\frac{2}{x}\right)
\end{array} \\
& =(\infty)(0) \\
& \begin{array}{l}
\text { indeterminate } \\
\text { product }
\end{array} \\
& =(\infty)(0) \begin{array}{l}
\text { indetert } \\
\text { product }
\end{array} \\
& \lim _{x \rightarrow \infty} 4 \underline{x} \ln \left(1+\frac{2}{x}\right) \\
& \lim _{x \rightarrow \infty} \frac{4 \ln \left(1+\frac{2}{x}\right)}{\frac{1}{x}} \frac{0}{0} \quad\left[\lim _{x \rightarrow \infty} 4\left(\frac{1}{1+\frac{2}{x}}\right)\left(+\frac{2}{x^{2}}\right)\left(\frac{+x^{2}}{1}\right)\right. \\
& \lim _{x \rightarrow \infty} \frac{4\left(\frac{1}{1+\frac{2}{x}}\right)\left(-\frac{2}{x^{2}}\right)}{\frac{-1}{x^{2}}} \\
& \text { Bring one down! } \\
& \text { step 3: } e^{\text {answer }}
\end{aligned}
$$

20. If $f(x)=\frac{1}{x}$, verify $f(x)$ satisfies the Mean Value Theorem on the interval $[1,10]$ and find all c that satisfies the conclusion of the Mean Value Theorem.

MUT: there exists a $c, 1 \leq c \leq 10$ so that

$$
f^{\prime}(c)=\frac{f(10)-f(1)}{10-1}=\frac{\frac{1}{10}-1}{9} \frac{10}{10}=\frac{-9}{90}=\frac{-1}{10}
$$

solve $f^{\prime}(x)=\frac{-1}{10} \rightarrow \frac{-1}{x^{2}}=\frac{-1}{10} \rightarrow 10=x^{2}$

$$
x=\sqrt{10}
$$

21. Find the absolute maximum and minimum of the given function on the given interval.
a) $x^{3}-5 x^{2}+3$ on $[-1,3]$
step: Find all critical numbers in $[-1,3]$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-10 x \\
& =x(3 x-10)
\end{aligned}
$$

$\operatorname{cn}: \quad x=0$

b) $x \ln x$ on $[1, e]$

$$
\begin{aligned}
& f^{\prime}(x)=\ln x+x \cdot \frac{1}{x} \\
& f^{\prime}(x)=\ln x+1 \\
& \text { cn: } \ln x+1=0 \\
& \ln x=-1 \rightarrow x=e^{-1}=\frac{1}{e}
\end{aligned}
$$

Step 2: evaluate $f(x)$ at endpoints o $c . n$.

$$
\begin{aligned}
& f(-1)=-1-5+3=-3 \\
& f(3)=27-45+3=-15 \\
& f(0)=3 \quad \begin{array}{l}
\text { abs max }=3 \\
\text { abs min }=-15
\end{array}
\end{aligned}
$$

$$
f(1)=\ln (1)=0
$$

$$
f(e)=\ln e=e
$$

abs $m n=0$ abs $\max =e$
22. Find the intervals where the given function is increasing and decreasing, local extrema, intervals of concavity and inflection points.

$$
\text { a) } \begin{aligned}
& f(x)=x^{3}-2 x^{2}+x \\
& f^{\prime}(x)=3 x^{2}-4 x+1 \\
&=(3 x-1)(x-1) \\
& \text { CR: } x=\frac{1}{3}, x=1 \\
&+1 \vdots \\
& \hline 0 \frac{1}{3} \frac{3}{4}{ }^{2}
\end{aligned}
$$

$$
\ln C:\left(-\infty, \frac{1}{3}\right) \cup(1, \infty)
$$

$$
\begin{aligned}
& \frac{1}{27}-\frac{2}{9}+\frac{1}{3} \\
& \frac{1-6+9}{2 ?}
\end{aligned}
$$

dec: $\left(\frac{1}{3}, 1\right)$
$\max :\left(\frac{1}{3}, \frac{4}{27}\right)$

$$
f^{\prime \prime}(x)=6 x-4
$$

$$
\min :(1,0)
$$

$$
\begin{array}{r}
f^{\prime \prime}(x)=0 \\
6 x-4=0 \\
x=\frac{2}{3}
\end{array}
$$

$$
\text { b) } f(x)=x e^{2 x}
$$

$\operatorname{lnc} / \mathrm{dec} / \max / \min :$ Look at $f^{\prime}(x)=1 \cdot e^{2 x}+x \cdot 2 e^{2 x}$

dec: $\left(-\infty,-\frac{1}{2}\right)$ local max none
$\operatorname{lnc}\left(-\frac{1}{2}, \infty\right)$ local min: $\left(\frac{-1}{2}, \frac{-1}{2} e^{-1}\right)$
$f\left(-\frac{1}{2}\right)$
concavity a inflection points look at $f^{\prime \prime}(x)$
23. Find the concavity of f if $f^{\prime}(x)=\frac{\ln x}{x}$
concave UP: $(-1, \infty)$
concave down: $(-\infty,-1)$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{\frac{1}{x}(x)-\ln x(1)}{x^{2}} \\
& \text { infection point: }\left(-1,-e^{-2}\right) \\
& f^{\prime \prime}(x)=\frac{1-\ln x}{x^{2}} \\
& f^{\prime \prime}(x)=0 \text { if } 1-\ln x=0 \\
& 1=\ln x \\
& x=e \\
& \text { CCu: }(0, e) \\
& \text { ccdown: }(e, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=e^{2 x}+2 x e^{2 x} \\
& f^{\prime \prime}(x)=2 e^{2 x}+2 e^{2 x}+2 x e^{2 x}(2) \\
& =4 e^{2 x}+4 x e^{2 x} \\
& f^{\prime \prime}(x)=4 e^{2 x}(1+x)
\end{aligned}
$$

24. In the graph that follows, the graph of f^{\prime} is given. Using the graph of f^{\prime}, determine all critical values of f, where f is increasing and decreasing, local extrema of f, where f is concave up and concave down, and the x-coordinates of the inflection points of f. Assume f is continuous.

25. A cardboard rectangular box holding 32 cubic inches with a square base and open top is to be constructed. If the material for the base costs $\$ 2$ per square inch and material for the sides costs $\overline{\$ 5}$ per square inch, find the dimensions of the cheapest such box.

constraint: $V=32$

each side is $x h$ in 2

$$
\begin{aligned}
\operatorname{minimize} \text { cost } & =C_{\text {base }}+C_{4 \text { sides }} \\
& =2\left(x^{2}\right)+5(4 x h) \\
& =2 x^{2}+20 x h \\
& =2 x^{2}+20 x\left(\frac{32}{x^{2}}\right)
\end{aligned}
$$

$$
C=2 x^{2}+\frac{640}{x} \text { Find minimum }
$$

26. Find the area of the largest rectangle that can be inscribed in a right triangle with legs of length 3 m and 4 m if two sides of the rectangle lie along the legs.

$$
\text { maximize } A_{r e c t a n g l e ~}=x y
$$

$$
A=x \cdot \frac{4}{3}(3-x)
$$

$$
\frac{y}{3-x}=\frac{4}{3}
$$

$$
=\frac{4}{3} \times(3-x)<
$$

$$
A=4 x-\frac{4}{3} x^{2}
$$

$$
\text { Area }=\frac{4}{3}\left(\frac{3}{9}\right)\left(3-\frac{3}{9}\right) \mathrm{m}^{2}
$$

27. Find an antiderivative of $\frac{1}{\sqrt{1-x^{2}}}-\frac{1+x}{x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{x}-1$

$$
F(x)=\arcsin x-\ln |x|-x+c
$$

28. Given $f^{\prime \prime}(x)=2 e^{x}-4 \sin (x), f(0)=1$, and

$$
\begin{aligned}
& f^{\prime}(0)=2 \text {, find } f(x) \text {. } \\
& f^{\prime \prime}(x)=2 e^{x}-4 \sin (x) \quad \longrightarrow f^{\prime}(x)=2 e^{x}+4 \cos x-4 \\
& f^{\prime}(x)=2 e^{x}+4 \cos x+c \int f(x)=2 e^{x}+4 \sin x-4 x+d d^{-1} \\
& f^{\prime}(0)=2 \quad 2=2 e^{0}+4 \cos (0)+c \quad f(0)=1 \\
& 2=6+c \rightarrow c=-4 \\
& 1=2 e^{0}+4 \sin (0)-4(0)+d \\
& 1=2+d \quad d=-1 \\
& \text { 29. Find the vector functions that describe the velocity }
\end{aligned}
$$ and position of a particle that has an acceleration of $\mathbf{a}(t)=\langle\sin t, 2\rangle$, initial velocity of $\mathbf{v}(0)=\langle 1,-1\rangle$ and an initial position of $\mathbf{r}(0)=\langle 0,0\rangle$.

$$
\begin{aligned}
& a(t)=\langle\sin t, 2\rangle \\
& v(t)=\left\langle-\cos t+c_{1}, 2 t+c_{2}\right\rangle \\
& v(0)=\langle 1,-1\rangle \rightarrow\langle 1,-1\rangle=\left\langle-\cos (0)+c_{1}, 0+c_{2}\right\rangle \\
& \quad\langle 1,-1\rangle=\left\langle-1+c_{1}, c_{2}\right\rangle \rightarrow \begin{array}{r}
1=-1+c_{1} \\
c_{1}=2 \\
c_{2}=-1
\end{array} \\
& v(t)=\langle-\cos t+2,2 t-1\rangle \\
& r(t)=\left\langle-\sin t+2 t+c_{3}, t^{2}-t+c_{4}\right\rangle \\
& r(0)=\langle 0,0\rangle \rightarrow\langle 0,0\rangle=\left\langle c_{3}, c_{4}\right\rangle
\end{aligned}
$$

30. $\sum_{i=2}^{5} i^{2}=2^{2}+3^{2}+4^{2}+5^{2}$
31. Write $1+\frac{1}{e}+\frac{1}{e^{2}}+\frac{1}{e^{3}}+\frac{1}{e^{4}}+\frac{1}{e^{5}}$ in summation notation.

$$
\sum_{i=0}^{5} \frac{1}{e^{i}}
$$

32. $\begin{aligned} \sum_{i=3}^{99}\left(\frac{1}{i}-\frac{1}{i+1}\right) & =\begin{array}{c}\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right) \\ \\ i=3 \quad \ldots+\left(\frac{1}{99}-\frac{1}{100}\right) \\ \end{array} \quad+\quad i=4 \quad i=5 \quad \\ & =\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\end{aligned}$
