Chain Rule: We use the chain rule when we are differentiating a function written as a composition of functions, that is $\frac{f(x)=g(h(x))}{f(x)=g \circ h}$. Then $f^{\prime}(x)=\underline{\underline{g}}(\underline{\underline{h(x)}}) \underline{\underline{h^{\prime}(x)}}$.

Generalized Power Rule: If $\underline{\nrightarrow \infty} \underset{(x)=(g(x))^{n}}{ }$, then $\underline{f^{\prime}(x)=n(g(x))^{n-1} \underline{g^{\prime}(x)}}$
Section 3.5

1. Find the derivative of the following functions:
a.) $f(x)=\left(x^{3}+x+1\right)^{8}$

$$
\begin{aligned}
& f(x)=\left(x^{3}+x+1\right)^{8} \\
& f^{\prime}(x)=8\left(x^{3}+x+1\right) \cdot\left(3 x^{2}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b.) } f(x)=\sqrt{x^{5}-\frac{3}{x^{2}}+\sin (x)-\sec (x)}=\left(x^{5}-3 x^{-2}+\sin x-\sec x\right)^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{1}{2}\left(x^{5}-3 x^{-2}+\sin x-\sec x\right)^{-\frac{1}{2}}\left(5 x^{4}+6 x^{-3}+\cos x-\sec x \tan x\right)^{-2} \\
& \text { c.) } f(x)=\frac{1}{\left(x^{2}+x-1\right)^{2}}=\left(x^{2}+x-1\right)^{-3} \\
& f^{\prime}(x)=-2\left(x^{2}+x-1\right)^{-2}(2 x+1)
\end{aligned}
$$

$$
\text { d.) } \begin{aligned}
h(x) & =\tan \left(x^{2}\right) \leftarrow \text { composition! } \\
h^{\prime}(x) & =\sec ^{2}\left(x^{2}\right) \cdot 2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { e.) } g(x)=\cos ^{3}\left(x^{2}+a^{2}\right)=\left(\cos \left(x^{2}+a^{2}\right)\right)^{3} \\
& g^{\prime}(x)=3\left(\cos \left(x^{2}+a^{2}\right)\right)^{2} \cdot\left(-\sin \left(x^{2}+\right.\right. \\
& \swarrow\left(\sin \left(x^{2}\right)\right)^{3} \\
& \text { f.) } g(x)=\sin ^{3}\left(x^{2}\right)+\cot (\sin (2 x))
\end{aligned}
$$

$$
\begin{aligned}
& \text { f.) } g(x)=\sin ^{3}\left(x^{2}\right)+\cot (\sin (2 x)) \\
& g(x)=3 \sin ^{2}\left(x^{2}\right) \cdot \cos \left(x^{2}\right) \cdot(2 x)-\csc ^{2}(\sin (2 x)) \cdot \cos (2 x) \cdot 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { g.) } f(x)=\underbrace{(2 x+1)^{5}}_{9} \underbrace{(\sqrt{x}-x+3)^{7}}_{h} \\
& f^{\prime}(x)=9^{\prime}+{ }^{\prime}+9^{\prime} \underbrace{(2 x+1)^{5}}_{9} \underbrace{7(\sqrt{x}-x+3)^{6}\left(\frac{1}{2} x^{\left.-\frac{1}{2}-1\right)}\right.}_{h^{\prime}}+\underbrace{5(2 x+1)(2)}_{9^{\prime}} \underbrace{(\sqrt{x}-x+3)}_{h} \\
& f^{\prime}(x)
\end{aligned}
$$

h.) $h(x)=\frac{x}{\left(x^{5}+1\right)^{4}} \frac{f}{g}$

$$
f=x
$$

$$
\begin{aligned}
& t=x \\
& g=\left(x^{5}+1\right)^{4}
\end{aligned}
$$

$$
h^{\prime}(x)=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

$$
h^{\prime}(x)=\frac{(1)\left(x^{5}+1\right)^{4}-x \cdot 4\left(x^{5}+1\right)^{3}\left(5 x^{4}\right)}{5}
$$

$$
\Rightarrow h(x)=x\left(x^{5}+1\right)^{-4}
$$

of $h^{\prime}(x)=x\left[-4\left(x^{5}+1\right)^{-5} \cdot 5 x^{4}\right]+(1)\left(x^{5}+1\right)^{-4}$
used product rule for

$$
h(x)=x\left(x^{5}+1\right)^{-4}
$$

$$
\begin{aligned}
& \text { 2. Given } h=f \circ g, g(3)=6 \text { g } g^{\prime}(3)=4, f^{\prime}(3)=2, \\
& f^{\prime}(6)=7 \text {. Find } h^{\prime}(3) \\
& h(x)=f \circ g \\
& h(x)=\frac{f(g(x))}{=} \text { composition! } \\
& h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& h^{\prime}(3)=f^{\prime}\left(\frac{g(3)}{6} \frac{g^{\prime}(3)}{4}=f^{\prime}(6) 4\right.
\end{aligned}
$$

3. Suppose that $F(x)=f\left(x^{4}\right)$ and $G(x)=(f(x))^{4}$. Also, suppose it is given that $f(2)=-1 . f(16)=3$,

(1)

$$
\begin{aligned}
& f^{\prime}(2)=-2 \text { and } f^{\prime}(16)=4, \\
& G^{\prime}(2) . \\
& F(x)=f\left(x^{4}\right) \\
& F^{\prime}(x)=f^{\prime}\left(x^{4}\right) \cdot 4 x^{3} \\
& F^{\prime}(2)=\underbrace{f^{\prime}(16)}_{4} \cdot 4(2)^{3} \\
&=4 \cdot 32=128
\end{aligned} \quad \begin{aligned}
& G^{\prime}(2) \\
& G^{\prime}(x)=4(x)=(f(x))^{\prime} \\
& G^{\prime}(2)=4(\underbrace{f(2)}_{-1})^{3} \underbrace{f^{\prime}(2)}_{-2}
\end{aligned}
$$

4. If $G(t)=(t+f(\tan 2 t))^{3}$, find an expression for $G^{\prime}(t)$.

$$
G^{\prime}(t)=3(t+\underbrace{f(\tan 2 t)})^{2}\left(1+f^{\prime}(\tan 2 t) \cdot \sec ^{2} 2 t(2)\right)
$$

Section 3.6
5. Find $\frac{d y}{d x}$ if $\underbrace{x^{4}-4 x^{2} y^{2}+y^{3}=0}$

$4 x^{3}-\left[4 x^{2} \cdot 2 y \frac{d y}{d x}+8 x y^{2}\right]+3 y^{2} \frac{d y}{d x}=0$
$\underbrace{4 x^{3}}_{\square}-\frac{8 x^{2} y}{} \frac{d y}{d x}-\underbrace{8 x y^{2}}_{\square}+3 y^{2} \frac{d y}{d x}\left(-8 x^{2} y+3 y^{2}\right)=0$

$$
\frac{d y}{d x}=\frac{-4 x^{3}+8 x y^{2}}{-8 x^{2} y+3 y^{2}}
$$

6. Find $\frac{d y}{d x}$ for $\cos (2 x)-\sin (x+y)=1$

$$
\begin{gathered}
\underbrace{-\sin (2 x) \cdot 2}_{L}-\cos (x+y)\left(1+\frac{d y}{d x}\right)=0 \\
-\cos (x+y)\left(1+\frac{d y}{d x}\right)=2 \sin (2 x) \\
1+\frac{d y}{d x}=\frac{2 \sin (2 x)}{-\cos (x+y)} \\
\frac{d y}{d x}=\frac{2 \sin (2 x)}{-\cos (x+y)}-1
\end{gathered}
$$

7. Find the equation of the line tangent to $x^{2}+y^{2}=2$ at $(1,1)$.
First find $\frac{d y}{d x}$:
Tangent line:

$$
\begin{aligned}
& \text { find } \frac{d y}{d x}: \text { point }=(1,1) \\
& 2 x+2 y \frac{d y}{d x}=0 \text { slope }=\frac{d y}{d x} / \begin{array}{l}
x=1 \\
y=1 \\
2 y \frac{d y}{d x}=-22 x \\
\frac{d y}{d x}=\frac{-x=1}{y=1}
\end{array} \\
& m=-\frac{1}{1}=-1 \\
& y-1=-1(x-1) \\
& y-1=-x+1 \\
& y=-x+2
\end{aligned}
$$

8. Regard y as the independent variable and x as the dependent variable, and use implicit differentiation

$$
x=f(y)
$$ to find $\frac{d x}{d y}$ for the equation $\underbrace{\left(x^{2}+y^{2}\right)^{2}}=2 x^{2} y$.

$$
\begin{aligned}
& \frac{4 x\left(x^{2}+y^{2}\right)}{(\frac{d x}{d y}+\underbrace{4 y\left(x^{2}+y^{2}\right.}_{l})=2 x^{2}+4 x y} \frac{d x}{d y} \\
& \frac{d x}{d y}\left(4 x\left(x^{2}+y^{2}\right)-4 x y\right)=-4 y\left(x^{2}+y^{2}\right)+2 x^{2} \\
& \frac{d x}{d y}=\frac{-4 y\left(x^{2}+y^{2}\right)+2 x^{2}}{4 x\left(x^{2}+y^{2}\right)-4 x y}
\end{aligned}
$$

$$
\begin{aligned}
& r(t)=\langle f(t), g(t)\rangle \\
& r(a)=\langle\underbrace{f(a)}_{x}, \frac{g(a)}{y}
\end{aligned}
$$

9. Find the angle between the tangent vector and the position vector for $\mathbf{r}(\mathbf{t})=\left\langle t^{2}, 2 t^{3}\right\rangle$ at the point where $t=-1$.
position vector at $t=-1$ is $\overrightarrow{r(-1)}$ tangent vector at $t=-1$ is $r^{\prime}(-1)$

$$
\begin{aligned}
& \left.r(t)=\left\langle t^{2}, 2 t^{3}\right\rangle \text { so } r(-1)=\langle 1,-2\rangle\right\} \\
& \left.r^{\prime}(t)=\left\langle 2 t, 6 t^{2}\right\rangle \text { so } r^{\prime}(-1)=\langle-2,6\rangle\right\} \cos \theta=\frac{-2-12}{\sqrt{5} \sqrt{40}} \\
& \cos \theta=\frac{-14}{\sqrt{200}} \\
& \text { line tangent to } \mathbf{r}(\mathbf{t})=\left\langle t^{3}+2 t, 4 t-5\right\rangle \text { at the point } \\
& \text { where } \overline{t=2} \text {. } \\
& \begin{array}{l}
\text { section } 1.3= \\
\text { in general, the vector equation of }
\end{array} \\
& \text { the line passing thru } r_{0} \text { of parallel } \\
& \cos \theta=\frac{-14}{10 \sqrt{2}}
\end{aligned}
$$ to \vec{v} is $r(t)=\vec{r}_{0}+t \vec{v}$

Here, $\overrightarrow{r_{0}}=\vec{r}(2)=\left\langle 2^{3}+2(2), 4(2)-5\right\rangle \quad \quad \quad r(t)=\left\langle t^{3}+2 t, 4 t-5\right\rangle$

$$
\vec{v}=\langle 14,4\rangle
$$

vector equation of tangent line is $\vec{r}_{0}+t \vec{v}$

$$
\begin{aligned}
& =\langle 12,3\rangle+t\langle 14,4\rangle \\
& =\langle 12+14 t, 3+4 t\rangle
\end{aligned}
$$

Parametric equations of tangent line are

$$
\begin{aligned}
& x=12+14 t \\
& y=3+4 t
\end{aligned}
$$

11. Sketch the curve $\mathbf{r}(\mathbf{t})=\left\langle t^{2}, t\right\rangle$. Find the tangent note: $\quad r(\underset{\underline{Z}}{(2)}=\langle 4,2\rangle$ and unit tangent vector to the curve at the point $(4,2)$. Draw the position and tangent vector along with the sketch of the curve at the point $(4,2)$.
tangent vector at $(4,2)$

$$
\text { is } r^{\prime}(\alpha)
$$

$$
r^{\prime}(t)=\langle 2 t, 1\rangle
$$

$$
\begin{aligned}
& r^{\prime}(t)=\langle 2 t, 1\rangle \\
& r^{\prime}(2)=\langle 4,1\rangle \longleftarrow \text { tangent vector }
\end{aligned}
$$

$=\left\langle\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right\rangle$
To sketch the curve

$$
r(t)=\left\langle t^{2}, t\right\rangle \text {, eliminate the }
$$ parameter to aet a cartesian

$$
\begin{aligned}
& \text { equation } \\
& x=t^{2} \\
& y=t
\end{aligned}
$$

12. Find the angle of intersection of the curves

$$
\mathbf{r}_{\mathbf{1}}(\mathbf{s})=\left\langle s-2, s^{2}\right\rangle \text { and } \mathbf{r}_{\mathbf{2}}(\mathbf{t})=\left\langle 1-t, 3+t^{2}\right\rangle
$$

the angle of intersection of two curves is defined to be the angle between the tangent vectors at the point of intersection. intersection: solve $s-2=1-t \rightarrow s=3-t$
$s^{2}=3+t^{2}$

Tangent vectors:

$$
\left.\begin{array}{l}
\text { nt vectors: } \\
r_{1}^{\prime}(s)=\langle 1,2 s\rangle \\
r_{2}^{\prime}(t)=\langle-1,2 t\rangle
\end{array} \begin{array}{l}
r_{1}^{\prime}(2)=\langle 1,4\rangle \\
r_{2}^{\prime}(1)=\langle-1,2\rangle
\end{array}\right\}<\begin{aligned}
& \text { tangent } \\
& \text { vectors }
\end{aligned}
$$

Angle of intersection $\cos \theta=\frac{\langle 1,4\rangle \cdot\langle-1,2\rangle}{\sqrt{17} \sqrt{5}}$

$$
\cos \theta=\frac{7}{\sqrt{85}}
$$

$$
\theta=\arccos \left(\frac{7}{\sqrt{85}}\right)
$$

Section 3.8
13. Find $y^{\prime \prime}$ for $y=\sqrt{x^{2}+1} \quad=\left(x^{2}+1\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(\not 2 x) \\
& y^{\prime}=\left(x^{2}+1\right)^{-\frac{1}{2}} \cdot x \leftarrow \text { product rule! } \\
& y^{\prime \prime}=\left(x^{2}+1\right)^{-\frac{1}{2}}(1)+-\frac{1}{2}\left(x^{2}+1\right)^{(2 x)}
\end{aligned}
$$

14. If $\mathbf{r}(\mathbf{t})=\left\langle t^{3}, t^{2}\right\rangle$ represents the position of a particle at time t, find the angle between the velocity and the acceleration vector at time $t=1$.
velocity at $t=1$ is $r^{\prime}(1)$

$$
\begin{aligned}
& r^{\prime}(t)=\left\langle 3 t^{2}, 2 t\right\rangle \\
& r^{\prime}(1)=\langle 3,2\rangle \\
& r^{\prime \prime}(t)=\langle 6 t, 2\rangle \\
& r^{\prime \prime}(1)=\langle 6,2\rangle
\end{aligned}
$$

acceleration at $t=1$ is $r^{\prime \prime}(1)$

$$
\begin{array}{lll}
\cos \theta=\frac{\langle 3,2\rangle \cdot\langle 6,2\rangle}{\sqrt{13} \sqrt{40}} & r^{\prime \prime}(1)=\langle 6,2\rangle \\
\cos \theta=\frac{18+4}{\sqrt{13} \sqrt{40}} & \theta=\arccos \left(\frac{22}{\sqrt{13} \sqrt{40}}\right)
\end{array}
$$

15. Find the 98 th derivative of:
a.) $f(x)=\frac{1}{x^{2}}$

$$
\begin{aligned}
& f(x)=x^{-2} \\
& f^{\prime}(x)=-2 x^{-3} \\
& f^{\prime \prime}(x)=3 \cdot 2 x^{-4} \\
& f^{\prime \prime \prime}(x)=-4.3 \cdot 2 x^{-6} \\
& f^{4}(x)=5 \cdot 4 \cdot 3 \cdot 2 x^{-6}
\end{aligned}
$$

b.)

$$
\begin{aligned}
& f(x)=\sin (3 x) \\
& f^{\prime}(x)=3 \cos (3 x) \\
& f^{\prime \prime}(x)=-3^{2} \sin (3 x) \\
& f^{\prime \prime \prime}(x)=-3^{3} \cos (3 x) \\
& f^{\prime \prime}(x)=3^{4} \sin (3 x)
\end{aligned}
$$

every four derivatives, you are back at $\sin (3 x)$ ale is divisible by four, so $f^{96}(x)=3 \sin (3 x)$

$$
\begin{aligned}
& f^{97}(x)=3^{97} \cos (3 x) \\
& f^{98}(x)=-3^{98} \sin (3 x)
\end{aligned}
$$

