Section 3.9

Derivatives of Parametric Curves: If $x=f(t)$ and $y=g(t)$, then $\frac{{ }^{*}}{d y}=\frac{d y / d t}{d x / d t}$.
This gives us a way to find the slope of the tangent line to the parametric curve at $t=t_{0}: m=\left.\frac{d y}{d x}\right|_{t=t_{0}}$.

1. Given $\underbrace{x=\cos t}$ and $\underline{y=t^{2}}$, find $\frac{d y}{d x}$. Next, find the $\quad \pi=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$ equation of the tangent line at $t=\frac{\pi}{4}$.
(1) point: $t=\frac{\pi}{4} \quad y=\left(\frac{\pi}{4}\right)^{2}=\frac{\pi^{2}}{16}$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t}{-\sin t}
$$

$$
\text { point: }\left(\frac{\sqrt{2}}{2}, \frac{\pi^{2}}{16}\right)
$$

tangent line: $y-\frac{\pi^{2}}{16}=\frac{-\pi}{\sqrt{2}}\left(x-\frac{\sqrt{2}}{2}\right)$
2. Let $x=t^{4}-4 t^{3}$ and $y=3 t^{2}-6 t$.

$$
m=\left.\frac{2 t}{-\sin t}\right|_{t=\frac{\pi}{4}} \begin{aligned}
& m=\frac{\pi}{2}\left(-\frac{2}{\sqrt{2}}\right) \\
& m=-\frac{\pi}{\sqrt{2}}
\end{aligned}
$$

a.) Find the equation of the tangent line at the

$$
\begin{aligned}
\text { point }(5,9) . & \text { (1) Find } t \text { so that } x \\
\equiv & =5 \\
4 & =9
\end{aligned}
$$ $\begin{array}{ll}y=9 & 3 t^{2}-6 t=9 \rightarrow t=-1\end{array}$

$$
\begin{aligned}
& m=\left.\frac{d y / d t}{d x / d t}\right|_{t=-1}=\left.\frac{6 t-6}{4 t^{3}-12 t^{2}}\right|_{t=-1} \quad \begin{array}{l}
t=-1 \\
m=\frac{-12}{-16}=\frac{3}{4} \\
\text { point }=(5,9) \\
m=\frac{3}{4} \\
\text { equation } y-9=\frac{3}{4}(x-5)
\end{array} \\
& \text { b.) Find all points) on the curve where the tangent }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { ind is vertical } \\
\downarrow \\
\text { undefined } \\
\text { slope }
\end{array} \downarrow \\
& \text { zero } \\
& \text { slope }
\end{aligned} \quad\left\{\begin{array}{l}
x=t^{4}-4 t^{3} \\
y=3 t^{2}-6 t \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
\hline \text { tangents }
\end{array}\right.
$$ line is vertical or horizontal.

$$
\begin{array}{r}
\text { (1) horizontal tangents } \\
m=0 \rightarrow d y / d t=
\end{array}
$$

$t=3<\begin{aligned} & x=-27 \\ & y=9\end{aligned}$

$$
\frac{d x}{d t}=0
$$

(2) vertical
tangents $m=$ undefined
$4 t^{3}-12 t^{2}=0$

$$
4 t^{2}(t-3)=0
$$

$$
t=0, \quad t=3
$$

3. Show the curve $x=\cos t$ and $y=\sin t \cos t$ has two tangents at $(0,0)$. Find the equations of these tangent lines.

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t \cos t
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{\pi}{2} \text { gives } x=0 \text { since } \cos \frac{\pi}{2}=0 \\
& \text { sin } \\
& t=\frac{3 \pi}{2} \text { gives } x=0 * y=0
\end{aligned}
$$

Tangent line one:

$$
\begin{aligned}
y & =\sin t \cos t \\
\frac{d y}{d t} & =\sin t(-\sin t)+\cos t \cos t \\
& =-\sin ^{2} t+\cos ^{2} t
\end{aligned}
$$

Tangent line two:
4. At what points on the curve $x=t^{3}+4 t, y=6 t^{2}$
the tangent line parallel to the line with equations $x=-7 t, y=12 t-5$?

$$
\text { solve: } \frac{1}{12} \frac{12 t}{3 t^{2}+4}=\frac{12}{-7} \frac{1}{12} \quad \square\left\{\begin{array}{r}
-7 t=3 t^{2}+4 \\
0=3 t^{2}+7 t+4
\end{array}\right.
$$

$$
\frac{t}{3 t^{2}+4}=-\frac{1}{7} \quad \begin{aligned}
& 0= \\
& S_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 0=3 t^{2}+7 t+4 \\
& 0=(3 t+4)(t+1) \\
& t=-\frac{4}{3}<x=\frac{-208}{27} \\
& y=\frac{32}{3} \\
& t=-1<x=-5 \\
& y=6
\end{aligned}
$$

Section 3.10

5. Water leaking onto a floor creates a circular pool with an area that increases at a rate of 3 square inches per minute. How fast is the radius of the
pool increasing when the radius is 10 inches?

$$
\begin{array}{ll}
r=\text { radius } & \text { Given: } \frac{d A}{d t}=3 \\
A=\operatorname{area} & \text { Find: }\left.\frac{d r}{d t}\right|_{r=10}
\end{array}
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{d A^{3}}{d t}=2 \pi r^{10} \frac{d r}{d t}
\end{aligned}
$$

$$
\Rightarrow \text { when } y=2
$$

6. When a rocket is 2 miles high, it is moving vertically

$$
\begin{aligned}
& 3=2 \pi(10) \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{3}{20 \pi} \frac{i n}{m i n}
\end{aligned}
$$ upward at a speed of 300 mph . At that instant, how fast is the angle of elevation of the rocket increasing, as seen by an observer on the ground 5 miles from the launching pad?

$\cos \theta=\frac{5}{\sqrt{29}}$

$$
\cos ^{2} \theta=\frac{25}{29}
$$

$$
\begin{aligned}
& \tan \theta=\frac{y}{5} \\
& \sec ^{2} \theta \frac{d \theta}{d t}=\frac{d y / d t}{5} \quad \frac{d y}{d t}=300
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \theta}{d t}=\frac{300}{5} \cos ^{2} \theta \\
& \frac{d \theta}{d t}=\frac{300}{5} \cdot \frac{25}{29} \frac{\text { rad }}{\text { hour }}
\end{aligned}
$$

7. A filter in the shape of a cone is 6 inches high and has a radius of 2 inches at the top. A solution is poured in the cone so that the water level is rising at a rate of $\frac{3}{2}$ inches per second. How fast is the water being poured in when the water level has depth of 2 inches?.

$$
\text { given: } \frac{d h}{d t}=\frac{3}{2}
$$

$$
v=\frac{1}{3} \pi\left(\frac{1}{3} h\right)^{2} h
$$

$$
\begin{aligned}
& \text { bin }\left.\right|^{\frac{r}{h}=\frac{2}{6}}
\end{aligned}
$$

8. One end of a 13 foot ladder is on the ground, and the other end rests on a vertical wall. If the top of the ladder is being pushed up the wall at a rate of 1 foot per second, how fast is the base of the ladder approaching the wall when it is 3 feet from the wall?

$$
\begin{aligned}
& \frac{d y}{d t}=1 \\
& \text { Find }\left.\frac{d x}{d t}\right|_{x=3}
\end{aligned}
$$

$$
\begin{array}{ll}
& \\
x^{2}+y^{2}=169 & y=\sqrt{169-9}=\sqrt{160} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
2(3) \frac{d x}{d t}+2 \sqrt{160}(1)=0
\end{array} \quad \begin{aligned}
& 6 \frac{d x}{d t}=-2 \sqrt{160} \\
& \frac{d x}{d t}=-\frac{2 \sqrt{160}}{6} \frac{f}{5}
\end{aligned}
$$

9. A point moves around the circle $x^{2}+y^{2}=9$. When the point is at $(-\sqrt{3}, \sqrt{6})$, its x coordinate is increasing at a rate of 20 units per second. How fast is its y coordinate changing at that instant?

$$
\begin{array}{lc}
\left.\frac{d x}{d t}\right|_{x=-\sqrt{3}} ^{y=\sqrt{6}} \begin{array}{ll}
& \text { Find } \frac{d y}{d t} \\
& x^{2}+y^{2}=9 \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
2(-\sqrt{3})(20)+2 \sqrt{6} \frac{d y}{d t}=0 \\
2 \sqrt{6} \frac{d y}{d t}=40 \sqrt{3} \rightarrow \frac{d y}{d t}=\frac{40 \sqrt{3}}{2 \sqrt{6}} \frac{\text { units }}{\mathrm{sec}}
\end{array}
\end{array}
$$

10. Two sides of a triangle have lengths 5 m and 4 m . The angle between them is increasing at a rate of $0.06 \mathrm{rad} / \mathrm{s}$. Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is 60°.

11. A trough is 10 feet long and its ends have the shape of isosceles triangles that are 3 feet across the top and have a height of 1 foot. If the trough is filled with water at a rate of 12 cubic feet per minute, how fast is the water level rising when the water is

$$
\begin{aligned}
& \text { given: } \frac{d V}{d t}=12 \frac{\mathrm{ft}^{3}}{\mathrm{~min}} \\
& \text { Find }\left.\frac{d h}{d t}\right|_{h=6} \text { in } \\
& h=\frac{1}{2} f t
\end{aligned}
$$

$\frac{b}{h}=\frac{3}{1}$
$b=3 h$

$$
\begin{aligned}
& V=\left(\frac{1}{2} b h\right)(10) \\
& V=\frac{1}{2}(3 h) h(10) \\
& V=15 h^{2} \\
& \frac{d V^{12}}{d t}=30 h^{\frac{1}{2}} \frac{d h}{d t}
\end{aligned} \quad \begin{aligned}
& \frac{12}{15}=\frac{d h}{d t} \\
& \frac{4}{5} \frac{f t}{\min }=\frac{d h}{d t}
\end{aligned}
$$

Section 3.11
12. Let $y=4-x^{2}$. Find Δy if x changes from $x=1$ to $x=1.5$.

$$
f(x)=y=4-x^{2}
$$

x changes from $x=1$ to $x=1.5=\frac{3}{2}$

$$
\Delta x=\frac{1}{2}
$$

$$
\begin{aligned}
& \Delta y=f\left(\frac{3}{2}\right)-f(1) \\
& \Delta y=4-\frac{9}{4}-(3) \\
& \Delta y=1-\frac{9}{4}=-\frac{5}{4}
\end{aligned}
$$

13. If $f(x)=4-x^{2}$, find $d y$ if $x=1$ and $d x=\frac{1}{2}$.

$$
\begin{aligned}
d y=\text { differential } \\
\text { if } y=f(x), \text { then } \begin{aligned}
d y & =f^{\prime}(x) d x \\
d y & =f^{\prime}(1)\left(\frac{1}{2}\right) \\
& =-2\left(\frac{1}{2}\right)=-1
\end{aligned}
\end{aligned}
$$

$$
f(x)=4-x^{2}
$$

$$
f^{\prime}(x)=-2 x
$$

$$
\text { if } x=1, \quad f^{\prime}(1)=-2
$$

$$
d x=\frac{1}{2}
$$

14. Find the differential $d y$ if $y=\frac{r}{r+1}$ and $d r=0.5$.

15. Use differentials to approximate $(1.97)^{6}$.

$$
f(x)=x^{6}
$$

approximate $f(1.97)$

linear approximation at

$$
x=2 \text { is } L(x)=f(2)+f^{\prime}(2)(x-2)
$$

$$
\begin{array}{ll}
f(x)=x^{6} & f^{\prime}(x)=6 x^{5} \\
f(2)=64 & f^{\prime}(2)=6(32) \\
f^{\prime}(2)=192
\end{array}
$$

second method: use differentials

$$
f(a+d x) \approx f(a)+f^{\prime}(a) d x
$$

$$
\begin{aligned}
& f(x)=x^{6} \\
& a=2 \\
& d x=-0.03
\end{aligned}
$$

$$
\begin{aligned}
& f(a+d x) \approx+(a)+4(a) \text { /720 } \\
& f(1.97) \approx f(2)^{192}+f^{\prime}(2)(-0.03)
\end{aligned}
$$

16. Use differentials to approximate $\cos \left(31.5^{\circ}\right)$

$$
\begin{aligned}
& f(x)=\cos x \\
& a=30^{\circ} \\
& d x=1.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(31.5^{\circ}\right) \approx f \times\left(30^{\circ}\right)+f^{\prime} /\left(30^{\circ}\right)\left(1.5^{\circ}\right) \\
& \begin{array}{ll}
f(x)=\cos x & f^{\prime}(x)=-\sin x \\
f\left(30^{\circ}\right)=\frac{\sqrt{3}}{2} & f^{\prime}\left(30^{\circ}\right)=-\frac{1}{2}
\end{array} \quad \begin{array}{l}
\text { concert } \\
\text { 1.5 to } \\
\text { radians }
\end{array} \\
& \cos \left(31.5^{\circ}\right) \approx \frac{\sqrt{3}}{2}-\frac{1}{2}\left(1.5 \frac{\pi}{180}\right)
\end{aligned}
$$

17. Find the linear approximation for $f(x)=\frac{1}{x}$ at $x=$
(4.) $a=4$

$$
\begin{aligned}
& L(x)=f(a)+f^{\prime}(a)(x-a) \\
& L(x)=f(4)+f^{\prime}(4)(x-4) \\
& L(x)=\frac{1}{4}-\frac{1}{16}(x-4)
\end{aligned}
$$

$$
\begin{array}{ll}
f(x)=\frac{1}{x} & f^{\prime}(x)=-\frac{1}{x^{2}} \\
f(4)=\frac{1}{4} & f^{\prime}(4)=-\frac{1}{16}
\end{array}
$$

18. Find the linear approximation for $f(x)=\sqrt[3]{x+1}$ at $x=0$ and use it to approximate $\sqrt[3]{0.95}$ $\overline{a=0}=$

$$
f(x)=\sqrt[3]{x+1}=(x+1)^{\frac{1}{3}}
$$

(1) $L(x)$ at $x=0$ is,

$$
L(x)=f(0)^{\prime}+f^{\prime}(0)^{\frac{1}{3}} x
$$

$$
f(0)=1
$$

$$
\begin{aligned}
& f(0)=1 \\
& f^{\prime}(x)=\frac{1}{3}(x+1)^{-\frac{\alpha}{3}}
\end{aligned}
$$

$$
f^{\prime}(0)=\frac{1}{3}(1)^{-\frac{2}{3}}=\frac{1}{3}
$$

(2)

$$
\begin{aligned}
& 1+\frac{1}{3} x \approx \sqrt[3]{x+1} \quad \text { let } x=-0.05 \\
& 1+\frac{1}{3}(-0.05) \approx \sqrt[3]{.95}
\end{aligned}
$$

19. The radius of a circular disk is given to be 24 cm with a maximum error in measurement of $0 . \overline{2 \mathrm{~cm}}$.

$$
\text { given: } \begin{aligned}
r & =24 \\
\Delta r & =.2
\end{aligned}
$$

(a) What is the maximum error in the calculated area of the disk?

$$
A=\pi r^{2}
$$

$\Delta A=A(24.2)-A(24)$
$\Delta A=\pi(24.2)^{2}-\pi(24)^{2}$
$\Delta A=9.64 \pi \mathrm{~cm}^{2}$
(b) Use differentials to approximate the maximum error in the area of the disk.

$$
\text { recall: } y=f(x)
$$

$$
\begin{array}{ll}
A=\pi r^{2} \\
d A=\underbrace{2 \pi r} d r & r=24 \\
d A=2 \pi(24)(.2) & d r=.2 \\
d A=9.6 \pi \mathrm{~cm}^{2}
\end{array}
$$

(c) What is the relative error? $=\frac{d A}{A}=\frac{9.6 \pi}{\pi(24)^{2}}$
20. Suppose for a function f, the linear approximation for $f(x)$ at $a=3$ is given by $y=2 x+7$.

$$
\begin{array}{l:l}
f(3)=L(3) & f^{\prime}(3)=L^{\prime}(3) \\
f(3)=2(3)+7 & f^{\prime}(3)=2 \\
f(3)=13 &
\end{array}
$$

a.) Find the value of $f^{\prime}(3)$ and $f(3)$.

$$
f(3)=13 \quad f^{\prime}(3)=2
$$

b.) If $\stackrel{\star}{g}(x)=\sqrt{f(x)}$, find the linear approximation for $g(x)$ at $a=3$.

$$
\begin{aligned}
& (x) \text { at } a=3 . \\
& n(x)=g(3)^{\sqrt{13}}+g^{\prime}(3)^{\frac{1}{\sqrt{3}}}(x-3) \\
& m(x)=\sqrt{13}+\frac{1}{\sqrt{13}}(x-3)
\end{aligned}
$$

$$
g(3)=\sqrt{F(3)}
$$

$$
g(3)=\sqrt{13}, \quad \frac{1}{2}
$$

$$
\begin{aligned}
& g(3)=\sqrt{13} \\
& g(x)=\sqrt{f(x)}=(f(x))^{\frac{1}{2}}
\end{aligned}
$$

$$
g^{\prime}(x)=\frac{1}{2}(f(x))^{-\frac{1}{2}} f^{\prime}(x)
$$

$$
g^{\prime}(x)=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}
$$

$$
g^{\prime}(3)=\frac{f^{\prime}(3)}{2 \sqrt{f(3)}}=\frac{2}{2 \sqrt{13}}
$$

$$
=\frac{1}{\sqrt{13}}
$$

21. Find the quadratic approximation for $f(x)=\cos x$ at $x=\frac{\pi}{3}$.

The quadratic approximation for $f(x)$ at $x=a$ is

$$
\begin{aligned}
& Q(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\
& Q(x)=f\left(\frac{\pi}{3}\right)+f^{\prime}\left(\frac{\pi}{3}\right)\left(x-\frac{\pi}{3}\right)+\frac{f^{\prime \prime}\left(\frac{\pi}{3}\right)^{\frac{1}{2}}}{2}\left(x-\frac{\pi}{3}\right)^{2} \\
& f=\cos x \quad f\left(\frac{\pi}{3}\right)=\frac{1}{2} \quad Q(x)=\frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3}\right)-\frac{1}{4}\left(x-\frac{\pi}{3}\right)^{2} \\
& f^{\prime}=-\sin x \quad f^{\prime}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
& f^{\prime \prime}=-\cos x \quad f^{\prime \prime}\left(\frac{\pi}{3}\right)=-\frac{1}{2}
\end{aligned}
$$

