Spring 2012 Math 152

Overview of Material for Test I
 courtesy: Amy Austin

The Fundamental Theorem of Calculus (6.4)

1. Part I: If f is continuous on $[a, b]$, then the function g defined by
$g(x)=\int_{a}^{x} f(t) d t$ is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.
2. Part II: If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is an antiderivative of f.

The substitution rule (6.5):

3. If $u=g(x)$ is a differentiable function, then $\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u$

Area (7.1)
4. a.) $A=\int_{a}^{b}[T o p-B o t t o m] d x$ if an x-integral is preferred.

b.) $A=\int_{c}^{d}[R i g h t-L e f t] d y$ if a y-integral is preferred.

c.) If we are asked to find the area bounded by the curves $y=f(x), y=g(x)$ where $f(x) \geq g(x)$ for some values of x but $g(x) \geq f(x)$ for other values of x, we must split the integral at each intersection point.

Volume (7.2-7.3)

5. a.) Disk: Note: The formulas below are for the general case. See my lecture notes for variations.

- $V=\int_{a}^{b} \pi r^{2} d x$ if revolving around the x axis.
$r=f(x)$

- $V=\int_{c}^{d} \pi r^{2} d y$ if revolving around the y axis.
$r=g(y)$

b.) Washer: Note: The formulas below are for the general case. See my lecture notes for variations.
- $V=\int_{a}^{b} \pi\left(R^{2}-r^{2}\right) d x$ if revolving around the x axis.
$R=$ Top function; $r=$ bottom function.

- $V=\int_{c}^{d} \pi\left(R^{2}-r^{2}\right) d y$ if revolving around the y axis.
$R=$ Right function; $r=$ Left function.
c.) Shell: Note: The formulas below are for the general case. See my lecture notes for variations.
- $V=\int_{a}^{b} 2 \pi r h d x$ if revolving around the y axis.
$r=x, h=f(x)$

- $V=\int_{c}^{d} 2 \pi r h d y$ if revolving around the x axis. $r=y, h=g(y)$

d.) Slicing:

- $V=\int_{a}^{b} A d x$ if cross sections are perpendicular to the x axis, and A is the area of a cross section.
- $V=\int_{c}^{d} A d y$ if cross sections are perpendicular to the y axis, and A is the area of a cross section.

Work (7.4)

6. If the force F is constant, then the work W done in moving the object a distance d is $W=F d$.
7. If the force $f(x)$ is not constant, then the work W done in moving the object from $x=a$ to $x=b$ is $W=\int_{a}^{b} f(x) d x$.
a.) Spring problems: The force $f(x)$ needed to maintain a spring stretched x units beyond its natural length is $f(x)=k x$. Therefore the work W required to stretch the spring from $x=a$ to $x=b$ units beyond the natural length is $W=\int_{a}^{b} f(x) d x$.

b.) Rope pulling problems:

- Pulling the rope only: If the rope is b units long and weighs w (Pounds or Newtons) per unit of length, then the work required to pull the entire rope is $W=\int_{0}^{b} w x d x$.
- Pulling the rope with weight attached: The total work is the work required to pull the rope plus the work required to lift the weight. Note if we are only pulling a portion of the rope to the top, then we can think of the remaining rope as a weight that needs to be pulled to the top.
c.) Water pumping problems: There are many variations, depending on the shape of the tank, the shape of a horizontal cross section of water, whether the tank is full, and how much of the tank you are emptying. To be as general as possible, $W=\rho g \int d A d y$, where ρg is the weight density
of water, A is the area of an arbitrary (horizontal) slice of water and d is the distance the slice of water must travel to exit the tank. Note if the tank has a spout on the top of the tank, then this affects the distance.

$\underline{\text { Average Value (7.5) }}$

8. The average value of $f(x)$ from $x=a$ to $x=b$ is $f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.

The Mean Value Theorem for Integrals states that if $f(x)$ is continuous over the interval $[a, b]$, then there is a number $c, a \leq c \leq b$ so that $f(c)=f_{\text {ave }}$.

Integration by Parts (8.1)

9. Formula: $\int u d v=u v-\int v d u$

Case I:

$$
\begin{aligned}
& \int x^{n} e^{k x} d x: u=x^{n} ; d v=e^{k x} d x \\
& \int x^{n} \sin (k x) d x: u=x^{n} ; d v=\sin (k x) d x \\
& \int x^{n} \cos (k x) d x: u=x^{n} ; d v=\cos (k x) d x
\end{aligned}
$$

Case II:
$\int x^{n}(\ln x) d x: u=\ln x ; d v=x^{n} d x$

Case III:

$\int x^{n} \arccos x d x: u=\arccos x ; d v=x^{n} d x$
$\int x^{n} \arcsin x d x: u=\arcsin x ; d v=x^{n} d x$
$\int x^{n} \arctan x d x: u=\arctan x ; d v=x^{n} d x$
Case IV:
$\int e^{x} \cos x d x: u=e^{x} ; d v=\cos x d x$
$\int e^{x} \sin x d x: u=e^{x} ; d v=\sin x d x$

Trig Integrals (8.2)

10. Integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$:
a.) If m is odd (and positive), factor out one sine and use
$\sin ^{2} x=1-\cos ^{2} x$. Then, substitute $u=\cos x$.
b.) If n is odd (and positive), factor out one cosine and use $\cos ^{2} x=1-\sin ^{2} x$. Then, substitute $u=$ $\sin x$.
c.) If both m and n are odd, use either case above (but not both).
d.) If both m and n are even, use the identities:
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
11. Integrals of the form $\int \tan ^{m} x \sec ^{n} x d x$:
a.) If m is odd (and positive), factor out one $\sec x \tan x$ and use $\tan ^{2} x=\sec ^{2} x-1$. Then, substitute $u=\sec x$.
b.) If n is even (and positive), factor out one $\sec ^{2} x$ and use the identity $\sec ^{2} x=1+\tan ^{2} x$. Then, substitute $u=\tan x$.
c.) If m is odd and n is even, use either case above (but not both).
d.) If m is even and n is odd, try breaking up into sines and cosines.
12. Integrals of the form [The identities below need not be memorized for the exam]

- $\int \sin (A x) \cos (B x) d x$: Use the identity $\sin A \cos B=\frac{1}{2}(\sin (A-B)+\sin (A+B))$
- $\int \sin (A x) \sin (B x) d x$: Use the identity $\sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B))$
- $\int \cos (A x) \cos (B x) d x$: Use the identity
$\cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B))$

