Spring 2008 Math 152

Overview of Material for Test II
courtesy: Amy Austin

Numerical Integration: sec 8.8

1. Numerical Integration: Suppose I'd like to know $\int_{a}^{b} f(x) d x$. There are three techniques of approximating an integral:
I. Midpoint Rule:
$\int_{a}^{b} f(x) d x \approx \Delta x\left[f\left(\overline{x_{1}}\right)+f\left(\overline{x_{2}}\right)+f\left(\overline{x_{3}}\right)+\ldots+f\left(\overline{x_{n}}\right)\right]$
where $\Delta x=\frac{b-a}{n}$ and $\overline{x_{i}}$ is the midpoint of the ith subinterval.

II. Trapezoid Rule:

$\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right]$
where $\Delta x=\frac{b-a}{n}$ and x_{i} are the points of the partition.
III. Simpson's Rule:
$\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+f\left(x_{n}\right)\right]$
where $\Delta x=\frac{b-a}{n}$ and x_{i} are the points of the partition.

- Error Bound formulas: If you are asked to find an upper bound on the error, these formulas will be provided on the 152 common exam.

1. Error Bound for Midpoint Rule:
$\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}$, where $K=\max \left|\mathrm{f}^{\prime \prime}(\mathrm{x})\right|$ for $a \leq x \leq b$
2. Error Bound for Trapezoid Rule:
$\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$, where $K=\max \left|\mathrm{f}^{\prime \prime}(\mathrm{x})\right|$ for $a \leq x \leq b$
3. Error Bound for Simpson's Rule:
$\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$, where $K=\max \left|\mathrm{f}^{(4)}(\mathrm{x})\right|$ for $a \leq x \leq b$

Improper Integrals: sec 8.9

2. Improper Integrals:

Case I: Integrals where one (or both) of the limits is infinite: Your goal is to determine whether the improper integral converges (finite value) or diverges (infinite value).
а.) $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
b.) $\int_{-\infty}^{a} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{a} f(x) d x$
c.) $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$, then try to evaluate both integrals.
Case II: Integrals where there is a discontinuity on the interval $[a, b]$:
a.) Suppose $f(x)$ is discontinuous at $x=a$: Then
$\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$
b.) Suppose $f(x)$ is discontinuous at $x=b$: Then
$\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x$
c.) If $f(x)$ is discontinuous at some c where $a<c<b$, then
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$, then try to evaluate both integrals.

- Comparison Theorem for Improper Integrals:
a.) Suppose $f(x)$ and $g(x)$ are continuous, positive functions on the interval $[a, \infty)$. Also, suppose that $f(x) \geq g(x)$ on the interval $[a, \infty)$. Then:
(i) If $\int_{a}^{\infty} f(x) d x$ converges, so does $\int_{a}^{\infty} g(x) d x$.
(Note: If $\int_{a}^{\infty} f(x) d x$ diverges, no conclusion can be drawn about $\left.\int_{a}^{\infty} g(x) d x\right)$.
(ii) If $\int_{a}^{\infty} g(x) d x$ diverges, so does $\int_{a}^{\infty} f(x) d x$.
(Note: If $\int_{a}^{\infty} g(x) d x$ converges, no conclusion can be drawn about $\left.\int_{a}^{\infty} f(x) d x\right)$.
Note: The way you choose the comparison function: You take the largest part of the numerator over the largest part of the denominator on the interval $[a, \infty)$. Once you find the comparison function, you must determine the direction of the inequality, then integrate the comparison function and draw the correct conclusion.

Differential Equations: sec 9.1

3. Def: A differential equation is an equation that contains an unknown function and some of its derivatives. Your primary goal is to try to solve the differential equation.

- A differential equation is separable if it is in the form $Q(y) d y=P(x) d x$. To solve such an equation, integrate both sides.
ex: $\frac{d y}{d x}=\frac{4 x^{2}}{2 y^{4}}$: seperate it: $2 y^{4} d y=4 x^{2} d x$, therefore $\frac{2}{5} y^{5}=\frac{4}{3} x^{3}+C$ Then solve for y. You may have an initial condition which allows you to solve for C : Suppose $y(2)=3$, then $\frac{2}{5} 3^{5}=\frac{4}{3} 2^{3}+C$, solve for C, then solve for y.
- Brine Problems: Suppose a tank contains L Liters of salt water (could contain no salt at time $t=0$). Now let's suppose a salt concentration I is going into the tank at a given rate R, the solution is continually stirred and it is exiting the tank at the same rate. Then if $y=y(t)$ is the amount of salt in the tank at time t, then
$\frac{d y}{d t}=(I) * R-\frac{Y}{L} * R$, and $y(0)=$ amt of salt in the tank at time $t=0$. Then solve for y.

Differential Equations: sec 9.2

4. Linear differential equations

- A differential equation is linear if it is in the form
$\frac{d y}{d x}+P(x) y=Q(x)$. It is important that you recognize which variable is independant and which is dependant. If your equation contains $\frac{d y}{d x}$, then the independant variable is x; the dependant variable is y.
- To solve a linear differential equation, you must first find the integrating factor $I(x)=e^{\int P(x) d x}$.
- Next, multiply both sides of the differential equation by $I(x): I(x)\left(\frac{d y}{d x}+P(x) y\right)=I(x) Q(x)$, which then becomes
$(y I(x))^{\prime}=I(x) Q(x)$. Next, integrate both sides and then solve for y.

Arc Length: sec 9.3

5. There are three possible formulas which gives the length of a curve:
a.) If $y=f(x), a \leq x \leq b$, then the length of the curve from $x=a$ to $x=b$ is $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
b.) If $x=g(y), c \leq y \leq d$, then the length of the curve from $y=c$ to $y=d$ is $L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
c.) If $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, then the length of the curve from $t=\alpha$ to $t=\beta$ is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Surface Area of Revolution: sec 9.4

6. Revolution around the x axis:
a.) If the curve $y=f(x), a \leq x \leq b$ is revolved around the x axis, then the resulting surface area is given by
$S A=2 \pi \int_{a}^{b} f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
b.) If the curve $x=g(y), c \leq y \leq d$ is revolved around the x axis, then the resulting surface area is given by $S A=2 \pi \int_{c}^{d} y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
c.) If the curve $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, is revolved around the x axis, then the resulting surface area is $S A=2 \pi \int_{\alpha}^{\beta} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
7. Revolution around the y axis:
a.) If the curve $y=f(x), a \leq x \leq b$ is revolved around the y axis, then the resulting surface area is given by $S A=2 \pi \int_{a}^{b} x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$
b.) If the curve $x=g(y), c \leq y \leq d$ is revolved around the y axis, then the resulting surface area is given by
$S A=2 \pi \int_{c}^{d} g(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$
c.) If the curve $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, is revolved around the y axis, then the resulting surface area is given by
$S A=2 \pi \int_{\alpha}^{\beta} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Moments and Centers of Gravity: sec 9.5

8. If we have a system of n particles with masses $m_{1}, m_{2}, \ldots, m_{n}$ located at the points $x_{1}, x_{2}, \ldots, x_{n}$ on the x axis, then

$$
\bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
$$

9. If we have a system of n particles with masses $m_{1}, m_{2}, \ldots, m_{n}$ located at the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ in the $x-y$ plane.

- The moment of the system about the y axis is $M_{y}=\sum_{i=1}^{n} m_{i} x_{i}$. This measures the tendency of the system to rotate about the y axis.
- The moment of the system about the x axis is $M_{x}=\sum_{i=1}^{n} m_{i} y_{i}$. This measures the tendency of the system to rotate about the x axis.
- The center of mass is (\bar{x}, \bar{y}) where

$$
\bar{x}=\frac{M_{y}}{\sum_{i=1}^{n} m_{i}} \quad \text { and } \quad \bar{y}=\frac{M_{x}}{\sum_{i=1}^{n} m_{i}}
$$

10. Now we have a function $y=f(x)$ with uniform density ρ on the interval $[a, b]$.

- The moment about the y-axis is:
$M_{y}=\rho \int_{a}^{b} x f(x) d x$
- The moment about the x-axis is:
$M_{x}=\rho \int_{a}^{b} \frac{1}{2}(f(x))^{2} d x$
- The x coordinate of the centroid is
$\bar{x}=\frac{1}{A} \int_{a}^{b} x f(x) d x$, where A is the area of the region.
- The y coordinate of the centroid is
$\bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x$, where A is the area of the region.

11. Now we have the region with density ρ bounded by $y=f(x)$ and $y=g(x)$, where $f(x) \geq g(x)$ over the interval $[a, b]$.

- The moment about the y-axis is:
$M_{y}=\rho \int_{a}^{b} x(f(x)-g(x)) d x$
- The moment about the x-axis is:
$\left.M_{x}=\rho \int_{a}^{b} \frac{1}{2}(f(x))^{2}-(g(x))^{2}\right) d x$
- The x coordinate of the centroid is
$\bar{x}=\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x$, where A is the area of the region.
- The y coordinate of the centroid is
$\bar{y}=\frac{1}{A} \int_{a}^{b} \frac{1}{2}\left([f(x)]^{2}-[g(x)]^{2}\right) d x$, where A is the area of the region.

Hydrostatic Pressure and Force: sec 9.6

12. General formula: The hydrostatic force on a horizontal plate is $F=\rho g d A$ where ρg is the weight density of the liquid, d is the depth of the plate, and A is the area of the plate. If you are finding the force on a vertical plate, finding the hydrostatic force requires integration. Take a small vertical strip of water with area A. Then $F=\int \rho g d A$, where d is the depth of the vertical strip. The limits of integration depends on how you define your axes.
