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Def: Let {an} = {a1, a2, a3, ..., ...} be a sequence. We define the infinite series to be
∞
∑

n=1

an = a1 + a2 + ... + an + ... + .... In other words, a series is the sum of a sequence.

The main focus of chapter 10 is to determine when the sum is finite.

Def: Let
∞
∑

n=1

an be a series. We will construct the sequence of partial sums

{sn} = {s1, s2, s3, ..., ...} as follows:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

Therefore a general formula for sn is

sn =
n
∑

i=1

ai = a1 + a2 + ... + an.

If lim
n→∞

sn = s, where s is finite, then we say the series
∞
∑

n=1

an converges and it’s sum

is s. If lim
n→∞

sn is infinite or does not exist, then we say the series
∞
∑

n=1

an diverges.

Test for Convergence

Below are the various tests to determine whether a particular series converges or

diverges.

1. The Test for Divergence: If lim
n→∞

an 6= 0, then
∞
∑

n=1

an diverges. NOTE: The

converse is not necessarily true: If lim
n→∞

an = 0, then the series
∞
∑

n=1

an does not

necessarily converge. Therefore if you find that lim
n→∞

an = 0, then the divergence

test fails. For example the series
∞
∑

n=1

1

n
diverges, however the TERMS {

1

n
} do go to

zero-just not fast enough to get a finite SUM.

————————————————————————-

2. Geometric series: The geometric series
∞
∑

n=1

arn−1 converges if |r| < 1 and diverges

if |r| ≥ 1. If |r| < 1, then the sum is
∞
∑

n=1

arn−1 =
a

1 − r
.



3. The Integral Test: If f(x) is a positive, continuous, decreasing function on [1,∞],

and an = f(n). Then:

a.) If

∫

∞

1

f(x) dx is convergent, then
∞
∑

n=1

an converges.

b.) If

∫

∞

1

f(x) dx diverges, then
∞
∑

n=1

an diverges.

————————————————————————-

4. The p-series
∞
∑

n=1

1

np
is convergent if p > 1 and divergent if p ≤ 1

————————————————————————–

5. The Comparison Test: (Use this test if the series is a series of positive terms, and

the series is comparable to a p-series or a geometric series.)

Suppose
∞
∑

n=1

an and
∞
∑

i=1

bn are series of positive terms.

a.) If
∞
∑

n=1

bn is convergent and an ≤ bn for all n, then
∞
∑

n=1

an is also convergent.

b.) If
∞
∑

n=1

bn is divergent and an ≥ bn for all n, then
∞
∑

n=1

an is also divergent.

————————————————————————–

6. The Limit Comparison Test: Conditions for using this test are the same conditions

as the comparison test.

Suppose
∞
∑

n=1

an and
∞
∑

n=1

bn are series of positive terms.

a.) If lim
n→∞

an

bn

= c > 0, then either both series converge or both diverge.

————————————————————————–

7. The Alternating Series Test: If the alternating series
∞
∑

n=1

(−1)nan satisfies

a.) an+1 ≤ an for all n (ie the sequence {an} is decreasing).

b.) lim
n→∞

an = 0

then the series converges.



8. The Ratio Test: (Use this test if the series contains n! or numbers raised to the nth

power, such as 2n. If the ONLY number raised to the nth power is (−1)n, then use

the alternating series test).

a.) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= L < 1, then the series
∞
∑

n=1

an is absolutely convergent (and

therefore convergent).

b.) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= L > 1 or lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= ∞, then the series
∞
∑

n=1

an is divergent.

c.) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1, then the test fails.

—————————————————————

9. Remainder formulas:

• The Remainder Estimate for the Integral test: Suppose
∞
∑

n=1

an is a series

which was shown to be convergent as a result of the integral test or a comparison test.

This means that the sum of the series is finite. Let’s say
∞
∑

n=1

an = s. Suppose further that

I used a partial sum sn =
n
∑

i=1

ai = a1 +a2 + ...+an to approximate s. Then the remainder

is defined to be Rn =
∞
∑

i=n+1

ai = an+1 + an+2 + ... + ....

a.) If we want to get an upper bound for the error in using sn to approximate s, then

Rn ≤

∫

∞

n

f(x) dx.

b.) If we want to get an interval on which the remainder lies, then
∫

∞

n+1

f(x) dx ≤ Rn ≤

∫

∞

n

f(x) dx.

• The Alternating Series Theorem: If
∞
∑

n=1

(−1)nan is a convergent alternating

series, and I used a partial sum sn =
n
∑

i=1

(−1)iai to approximate the sum, then an upper

bound on the absolute value of the remainder is |Rn| ≤ an+1.


