SERIES

courtesy of Amy Austin

<u>Def:</u> Let $\{a_n\} = \{a_1, a_2, a_3, ..., ...\}$ be a sequence. We define the infinite series to be $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ... + ...$ In other words, a series is the **sum** of a sequence. The main focus of chapter 10 is to determine when the sum is finite.

<u>Def:</u> Let $\sum_{n=1}^{\infty} a_n$ be a series. We will construct the sequence of partial sums $\{s_n\} = \{s_1, s_2, s_3, ..., ...\}$ as follows: $s_1 = a_1$ $s_2 = a_1 + a_2$ $s_3 = a_1 + a_2 + a_3$ Therefore a general formula for s_n is $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + ... + a_n$. If $\lim_{n \to \infty} s_n = s$, where s is finite, then we say the series $\sum_{n=1}^{\infty} a_n$ converges and it's **sum** is s. If $\lim_{n \to \infty} s_n$ is infinite or does not exist, then we say the series $\sum_{n=1}^{\infty} a_n$ diverges.

Test for Convergence

Below are the various tests to determine whether a particular series converges or diverges.

- 1. The Test for Divergence: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges. NOTE: The converse is not necessarily true: If $\lim_{n\to\infty} a_n = 0$, then the series $\sum_{n=1}^{\infty} a_n$ does not necessarily converge. Therefore if you find that $\lim_{n\to\infty} a_n = 0$, then the divergence test fails. For example the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, however the TERMS $\{\frac{1}{n}\}$ do go to zero-just not fast enough to get a finite SUM.
- 2. Geometric series: The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges if |r| < 1 and diverges if $|r| \ge 1$. If |r| < 1, then the sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$.

3. The Integral Test: If f(x) is a positive, continuous, decreasing function on $[1, \infty]$, and $a_n = f(n)$. Then:

a.) If
$$\int_{1}^{\infty} f(x) dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ converges.
b.) If $\int_{1}^{\infty} f(x) dx$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

- 4. The **p-series** $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$
- 5. The Comparison Test: (Use this test if the series is a series of positive terms, and the series is comparable to a p-series or a geometric series.) Suppose ∑_{n=1}[∞] a_n and ∑_{i=1}[∞] b_n are series of positive terms.
 a.) If ∑_{n=1}[∞] b_n is convergent and a_n ≤ b_n for all n, then ∑_{n=1}[∞] a_n is also convergent.
 b.) If ∑_{n=1}[∞] b_n is divergent and a_n ≥ b_n for all n, then ∑_{n=1}[∞] a_n is also divergent.
- 6. The Limit Comparison Test: Conditions for using this test are the same conditions as the comparison test.
 Suppose ∑_{n=1}[∞] a_n and ∑_{n=1}[∞] b_n are series of positive terms.
 a.) If lim_{n→∞} a_n/b_n = c > 0, then either both series converge or both diverge.
- 7. The Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ satisfies
 - a.) $a_{n+1} \leq a_n$ for all n (if the sequence $\{a_n\}$ is decreasing).
 - b.) $\lim_{n \to \infty} a_n = 0$

then the series converges.

- 8. The Ratio Test: (Use this test if the series contains n! or numbers raised to the nth power, such as 2^n . If the **ONLY** number raised to the nth power is $(-1)^n$, then use the alternating series test).
 - a.) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
 - b.) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent. c.) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then the test fails.

9. Remainder formulas:

• The Remainder Estimate for the Integral test: Suppose $\sum_{n=1}^{\infty} a_n$ is a series which was shown to be convergent as a result of the integral test or a comparison test. This means that the sum of the series is finite. Let's say $\sum_{n=1}^{\infty} a_n = s$. Suppose further that I used a partial sum $s_n = \sum_{i=1}^n a_i = a_1 + a_2 + ... + a_n$ to approximate s. Then the remainder is defined to be $R_n = \sum_{i=n+1}^{\infty} a_i = a_{n+1} + a_{n+2} + ... + ...$

a.) If we want to get an upper bound for the error in using s_n to approximate s, then $R_n \leq \int_n^\infty f(x) \, dx.$

b.) If we want to get an interval on which the remainder lies, then

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx.$$

• The Alternating Series Theorem: If $\sum_{n=1}^{\infty} (-1)^n a_n$ is a convergent alternating series, and I used a partial sum $s_n = \sum_{i=1}^n (-1)^i a_i$ to approximate the sum, then an upper bound on the absolute value of the remainder is $|R_n| \leq a_{n+1}$.