SERIES

courtesy of Amy Austin
Def: Let $\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, \ldots\right\}$ be a sequence. We define the infinite series to be $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\ldots+a_{n}+\ldots+\ldots$. In other words, a series is the sum of a sequence. The main focus of chapter 10 is to determine when the sum is finite.

Def: Let $\sum_{n=1}^{\infty} a_{n}$ be a series. We will construct the sequence of partial sums
$\left\{s_{n}\right\}=\left\{s_{1}, s_{2}, s_{3}, \ldots, \ldots\right\}$ as follows:
$s_{1}=a_{1}$
$s_{2}=a_{1}+a_{2}$
$s_{3}=a_{1}+a_{2}+a_{3}$
Therefore a general formula for s_{n} is
$s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$.
If $\lim _{n \rightarrow \infty} s_{n}=s$, where s is finite, then we say the series $\sum_{n=1}^{\infty} a_{n}$ converges and it's sum is s. If $\lim _{n \rightarrow \infty} s_{n}$ is infinite or does not exist, then we say the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Test for Convergence

Below are the various tests to determine whether a particular series converges or diverges.

1. The Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ diverges. NOTE: The converse is not necessarily true: If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ does not necessarily converge. Therefore if you find that $\lim _{n \rightarrow \infty} a_{n}=0$, then the divergence test fails. For example the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, however the TERMS $\left\{\frac{1}{n}\right\}$ do go to zero-just not fast enough to get a finite SUM.
2. Geometric series: The geometric series $\sum_{n=1}^{\infty} a r^{n-1}$ converges if $|r|<1$ and diverges if $|r| \geq 1$. If $|r|<1$, then the sum is $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$.
3. The Integral Test: If $f(x)$ is a positive, continuous, decreasing function on $[1, \infty]$, and $a_{n}=f(n)$. Then:
a.) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ converges.
b.) If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
4. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$
5. The Comparison Test: (Use this test if the series is a series of positive terms, and the series is comparable to a p-series or a geometric series.)
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{i=1}^{\infty} b_{n}$ are series of positive terms.
a.) If $\sum_{n=1}^{\infty} b_{n}$ is convergent and $a_{n} \leq b_{n}$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
b.) If $\sum_{n=1}^{\infty} b_{n}$ is divergent and $a_{n} \geq b_{n}$ for all n, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent.
6. The Limit Comparison Test: Conditions for using this test are the same conditions as the comparison test.
Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series of positive terms.
a.) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then either both series converge or both diverge.
7. The Alternating Series Test: If the alternating series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ satisfies
a.) $a_{n+1} \leq a_{n}$ for all n (ie the sequence $\left\{a_{n}\right\}$ is decreasing).
b.) $\lim _{n \rightarrow \infty} a_{n}=0$
then the series converges.
8. The Ratio Test: (Use this test if the series contains n ! or numbers raised to the $n t h$ power, such as 2^{n}. If the ONLY number raised to the $n t h$ power is $(-1)^{n}$, then use the alternating series test).
a.) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and therefore convergent).
b.) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
c.) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, then the test fails.

9. Remainder formulas:

- The Remainder Estimate for the Integral test: Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series which was shown to be convergent as a result of the integral test or a comparison test. This means that the sum of the series is finite. Let's say $\sum_{n=1}^{\infty} a_{n}=s$. Suppose further that I used a partial sum $s_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$ to approximate s. Then the remainder is defined to be $R_{n}=\sum_{i=n+1}^{\infty} a_{i}=a_{n+1}+a_{n+2}+\ldots+\ldots$
a.) If we want to get an upper bound for the error in using s_{n} to approximate s, then

$$
R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

b.) If we want to get an interval on which the remainder lies, then
$\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$.

- The Alternating Series Theorem: If $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is a convergent alternating series, and I used a partial sum $s_{n}=\sum_{i=1}^{n}(-1)^{i} a_{i}$ to approximate the sum, then an upper bound on the absolute value of the remainder is $\left|R_{n}\right| \leq a_{n+1}$.

