Examination 2

Instructions: Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Suppose $f(z)=(\bar{z})^{2}$ for every z. Show that the complex derivative $f^{\prime}(0)$ exists and equals 0 . (Recall that the notation \bar{z} means the complex conjugate of z.)
2. Determine values of the real numbers a, b, and c to make the function

$$
x^{2}+a y^{2}+y+i(b x y+c x)
$$

be an analytic function of the complex variable $x+y i$.
3. If $u(x, y)=4 x^{3} y-4 x y^{3}$, is there a function $v(x, y)$ such that $u(x, y)+i v(x, y)$ is an analytic function? Explain.
4. The complex tangent and secant functions are defined by analogy with the real counterparts: $\tan (z)=\frac{\sin (z)}{\cos (z)}$ and $\sec (z)=\frac{1}{\cos (z)}$. Is it correct to say that $\tan (z)$ is an analytic function having derivative $(\sec (z))^{2}$? Explain why or why not.
5. Suppose f is an analytic function defined on $\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, the upper half-plane. Given the information that

$$
f(f(z))=z \quad \text { and } \quad f^{\prime}(z)=\frac{1}{z^{2}} \quad \text { for every } z
$$

find the most general possible expression for $f(z)$.
6. Determine values of the complex numbers a, b, c, and d to ensure that if $w=\frac{a z+b}{c z+d}$, then the unit circle centered at 0 in the z-plane maps to the circle of radius 2 in the first quadrant of the w-plane tangent to the coordinate axes. See the figure.

Extra Credit Problem. Show that if u is the real part of a function, and v is the imaginary part, then the Cauchy-Riemann equations for u and v take the following form in polar coordinates:

$$
r \frac{\partial u}{\partial r}=\frac{\partial v}{\partial \theta} \quad \text { and } \quad r \frac{\partial v}{\partial r}=-\frac{\partial u}{\partial \theta}
$$

