Structure of \mathbb{C}, the complex numbers

- Algebraic structure: \mathbb{C} is a field.

We can add, subtract, multiply, divide (except by 0), and the commutative, associative, and distributive laws hold.

- In contrast to \mathbb{R} (the real numbers), the field \mathbb{C} is algebraically closed. $x^{2}+1=0$ has no solution in \mathbb{R} but does have a solution in \mathbb{C}. In fact, every polynomial has a root in the complex numbers.
- In contrast to \mathbb{C}, the field \mathbb{R} is ordered. When we write inequalities in this course, they have to involve absolute values of complex numbers.
- Metric structure: there is a distance function on \mathbb{C}, so we can talk about limits.

Polar representation

A point (x, y) in \mathbb{R}^{2} can be written $(r \cos (\theta), r \sin (\theta))$ in polar coordinates.
In complex notation, $z=x+i y=r(\cos (\theta)+i \sin (\theta))=r e^{i \theta}$ by Euler's formula.

Example

Compute $(1+i)^{407}$.
Solution: $1+i=\sqrt{2} e^{i \pi / 4}$, so
$(1+i)^{407}=2^{407 / 2} e^{407 i \pi / 4}=2^{407 / 2} e^{7 i \pi / 4}$ since $e^{400 i \pi / 4}=1$.
But $e^{7 i \pi / 4}=\frac{1-i}{\sqrt{2}}$, so the final answer is $2^{203}(1-i)$.

Assignment to hand in next time

- Section I.5: 1(b),(d)
- Section I.2: 1(c),(h)
- Section I.1: 1(b)

