Reminders on inverse functions

The cosine function is not one-to-one (injective), so no inverse function is defined unless the domain is restricted. The usual choice is to restrict the domain to the interval $[0, \pi]$.

The complex square-root function

The squaring function $z \mapsto z^{2}$ is not one-to-one.
One possible way to restrict the domain to get a one-to-one function is $\operatorname{Im}(z)>0$. With this restriction, z^{2} takes values that fill out the image plane with the exception of the positive real axis. With this restriction, \sqrt{i} would be $e^{i \pi / 4}$ and $\sqrt{-i}$ would be $e^{3 \pi i / 4}$.

On the other hand, we could restrict the domain of z^{2} to be $\operatorname{Re}(z)>0$.
With this choice, \sqrt{i} would still be $e^{i \pi / 4}$, but $\sqrt{-i}$ would be $e^{-i \pi / 4}$.

Assignment due next class

- Section I.5: Exercise 2(a),(b)

