Reminder on the complex logarithm

$$
\log (z)=\ln |z|+i \arg (z)
$$

General powers

When z and w are complex numbers, what should z^{w} mean?
If \exp and \log are to be inverses, then

$$
z^{w}=\exp \left(\log \left(z^{w}\right)\right)=\exp (w \log z)
$$

so it is reasonable to define z^{w} to mean $e^{w \log (z)}$.

Example

$$
\begin{aligned}
i^{1+i} & =e^{(1+i) \log (i)} \\
& =e^{(1+i) i\left(\frac{\pi}{2}+2 \pi n\right)} \\
& =e^{-\left(\frac{\pi}{2}+2 \pi n\right)} e^{i\left(\frac{\pi}{2}+2 \pi n\right)} \\
& =i e^{-\left(\frac{\pi}{2}+2 \pi n\right)}
\end{aligned}
$$

Assignment due next class

- Section I.7: Exercise 1(a),(b)

