Recap of definitions from last time

- A function $f(z)$ is analytic on an open set if $f^{\prime}(z)$ exists at every point of the set.
- A function $u(x, y)$ is harmonic on an open set if $u_{x x}+u_{y y}=0$ (Laplace's equation) at every point of the set.
- If u is a harmonic function, then v is a harmonic conjugate of u if the function $u+i v$ is analytic.

Quiz

1. (a) Write the Cauchy-Riemann equations.
(b) Give a concrete example of an analytic function.
(c) Give an example of a function that is not analytic.
2. (a) Write Laplace's equation.
(b) Give a concrete example of a harmonic function.
(c) Give an example of a function that is not harmonic.

Reminders on real linear approximation

A linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is represented by matrix multiplication:

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y} .
$$

The transformation is invertible when the determinant of the matrix is nonzero: $a d-b c \neq 0$.

A nonlinear transformation $\binom{x}{y} \mapsto\binom{u(x, y)}{v(x, y)}$ has a linear approximation given by the Jacobian matrix:

$$
\binom{u(x, y)}{v(x, y)}-\binom{u(0,0)}{v(0,0)} \approx\left(\begin{array}{ll}
u_{x}(0,0) & u_{y}(0,0) \\
v_{x}(0,0) & v_{y}(0,0)
\end{array}\right)\binom{x}{y} .
$$

The transformation is locally invertible if the Jacobian determinant is nonzero.

Jacobian matrix and Cauchy-Riemann equations

Suppose $f(z)$ is an analytic function, and $f=u+i v$. The Jacobian matrix of the transformation $\binom{x}{y} \mapsto\binom{u}{v}$ can be rewritten:

$$
\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{rr}
u_{x} & -v_{x} \\
v_{x} & u_{x}
\end{array}\right) .
$$

Then the Jacobian determinant equals $u_{x}^{2}+v_{x}^{2}$, or $\left|u_{x}+i v_{x}\right|^{2}$, or $\left|f_{x}\right|^{2}$, or $\left|f^{\prime}\right|^{2}$.

Conclusion: The transformation $z \mapsto f(z)$ is locally invertible when $f^{\prime}(z) \neq 0$.

Assignment

- Section II.3, Exercise 1(b)
- Section II.4, Exercise 2
- Section II.5, Exercise 1(f)

