Reminder

Exam 2 takes place on Thursday, October 26.

Refresher from last week

- If $f=u+i v$, and f is a reasonable function, then f is analytic if and only if the functions u and v satisfy the Cauchy-Riemann equations.

Here "reasonable" means that $\partial f / \partial x$ and $\partial f / \partial y$ are continuous functions.

- If u is a reasonable function, then u is harmonic if and only if $u_{x x}+u_{y y}=0$.

Here "reasonable" means that the partial derivatives $u_{x x}, u_{y y}, u_{x y}$, and $u_{y x}$ are continuous functions.

- If $f=u+i v$, and f is analytic, then u is harmonic.
- A function v is a harmonic conjugate of u if $u+i v$ is an analytic function.

A subtlety

If u is harmonic, must there be an analytic function f of which u is the real part?

Equivalent question: If u is harmonic, must there be a harmonic conjugate function v ?

Answer: It depends on the domain of the function. If the domain has no holes, then the answer is "yes."
But if the domain has a hole, then the answer is "not necessarily."

Example

On the annulus $\{z: 1<|z|<2\}$, the function $\ln |z|$ is harmonic. This function looks like it should be the real part of $\log (z)$, but the imaginary part $\arg (z)$ is not a well-defined continuous function on a loop that circles the origin.

Second refresher from last week

If $f=u+i v$, and f is analytic, then the Jacobian determinant of the transformation $\binom{x}{y} \mapsto\binom{u}{v}$ equals $\left|f^{\prime}\right|^{2}$.

Deduction: An analytic function is locally invertible at points where the derivative is nonzero.

Example

Suppose $f(z)=e^{z}$.
Then $f^{\prime}(z)=e^{z}$, which is never equal to 0 .
So the exponential function is locally invertible.
Any local inverse is a branch of the logarithm function. The derivative of $\log (z)$ can be computed by the chain rule:

$$
z=e^{\log (z)}, \quad \text { so } \quad \frac{d}{d z} z=\frac{d}{d z} e^{\log (z)}
$$

Then

$$
1=e^{\log (z)} \frac{d}{d z} \log (z)=z \frac{d}{d z} \log (z)
$$

so the derivative of any branch of $\log (z)$ equals $\frac{1}{z}$.

Assignment

- Dust off your multi-variable chain rule from real calculus to solve Exercise 5 in Section II.5.

A possible starting point is

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x} \\
r & =\sqrt{x^{2}+y^{2}} \\
\theta & =\arctan (y / x) .
\end{aligned}
$$

