Reminder

Exam 2 takes place on Thursday, October 26.
The material covered is Sections 2-7 of Chapter II.
Please bring your own paper to work on.

Recap: The group of fractional linear transformations

 or linear fractional transformations or Möbius transformationsCompositions of translations, rotations, dilations, and inversion ($z \mapsto 1 / z$) yield transformations of the form

$$
z \mapsto \frac{a z+b}{c z+d},
$$

where a, b, c, and d are complex numbers, and $a d-b c \neq 0$.

The "point at infinity"

We invent a point called ∞ and declare that $1 / 0=\infty$ and $1 / \infty=0$.

Then we can think of the fraction $\frac{a z+b}{c z+d}$ as being defined on $\mathbb{C} \cup\{\infty\}$: namely, the complex number $-d / c$ maps to the point ∞, and ∞ maps to the complex number a / c.

Group quiz

Suppose $w=\frac{z-1}{z+1}$.

1. Find the image in the w plane of the following points in the z plane: $0,1, \infty, i$.
2. Find the image in the w plane of the set $\{z: \operatorname{Re}(z)=0\}$ (the vertical axis in the z plane).
The answer is some circle: which circle?
3. Find the image in the w plane of $\{z:|z|=1\}$ (the unit circle in the z plane).
