Announcement

No office hour on Monday, November 6.
(I will be on an airplane.)

Reminders from last time

Theorem (Green's theorem)

If C is a simple closed curve, oriented counterclockwise, bounding a region G, and if the functions $P(x, y)$ and $Q(x, y)$ have continuous partial derivatives on $G \cup C$, then

$$
\int_{C}(P d x+Q d y)=\iint_{G}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

Theorem (Cauchy's integral theorem)
If $f(z)$ is analytic on and inside a simple closed curve C, then

$$
\oint_{C} f(z) d z=0 .
$$

Terminology for differentials

A differential $P(x, y) d x+Q(x, y) d y$ is called closed when

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} .
$$

Green's theorem implies that the integral of a closed differential around the boundary of a domain always equals 0 .

A differential $P(x, y) d x+Q(x, y) d y$ is called exact when there exists a function h for which

$$
P(x, y) d x+Q(x, y) d y=d h:=\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y
$$

Example
The differential $2 x d x+3 y^{2} d y$ is both closed and exact. ($h=x^{2}+y^{3}$)

Analytic functions and differentials

If $f(z)$ is analytic, then $f(z) d z$ always is a closed differential.
Namely $f(z) d z=f(z) d x+f(z) i d y$,
so the condition for being closed says that $\frac{\partial f}{\partial x} i=\frac{\partial f}{\partial y}$, which is equivalent to the Cauchy-Riemann equations.

The differential $f(z) d z$ is exact precisely when f has a complex antiderivative (also called a primitive). Indeed, if h is complex differentiable and $h^{\prime}=f$, then

$$
d h=\frac{\partial h}{\partial x} d x+\frac{\partial h}{\partial y} d y=f(z) d x+i f(z) d y=f(z) d z
$$

Harmonic functions and differentials

If $u(x, y)$ is harmonic, then $-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y$ always is a closed differential. Indeed, the condition for being closed says that

$$
\frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}}
$$

which is equivalent to Laplace's equation.
The differential $-\frac{\partial u}{\partial y} d x+\frac{\partial u}{\partial x} d y$ is exact precisely when u has a harmonic conjugate function. Indeed, $d v=\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y$, which matches the given differential precisely when the Cauchy-Riemann equations hold.

Assignment

- Exercise 2 in Section III.1.
- Exercise 5 in Section III.1.
- Exercise 2(a) in Section IV.1. (A way to parametrize the unit circle: $z=e^{i \theta}, 0 \leq \theta \leq 2 \pi$. Notice that you cannot divide by $m+1$ when $m=-1$.)

