Recap

Theorem (Cauchy's integral theorem)
If $f(z)$ is analytic on and inside a simple closed curve C, then

$$
\oint_{C} f(z) d z=0
$$

Cauchy's integral formula

Suppose f is analytic on and inside some simple closed curve C, and b is some point inside C.
Then $\frac{f(z)}{z-b}$ is not analytic inside C at the point b, so Cauchy's integral theorem says nothing obvious about

$$
\int_{C} \frac{f(z)}{z-b} d z
$$

But the integral can be rewritten as

$$
\int_{C} \frac{f(z)-f(b)}{z-b} d z+\int_{C} \frac{f(b)}{z-b} d z
$$

The first integral is equal to 0 . The second integral, after a change of variable and a deformation of the path, equals

$$
f(b) \int_{\text {circle with center } 0} \frac{1}{z} d z \quad \text { or } \quad f(b) \times 2 \pi i
$$

Conclusion

Theorem (Cauchy's integral formula)
If f is analytic on a domain G together with its oriented boundary C, and b is a point inside G, then

$$
f(b)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-b} d z
$$

Thus an analytic function is completely determined in a domain by the values of the function on the boundary!

Quiz

Complete the sentences:

1. A differential $P(x, y) d x+Q(x, y) d y$ is closed when ...
2. A differential $P(x, y) d x+Q(x, y) d y$ is exact when...

Examples of applying Cauchy's formula

- $\oint_{|z|=2} \frac{3 z^{2}}{z-1} d z=2 \pi i \times\left. 3 z^{2}\right|_{z=1}=6 \pi i$
- $\oint_{|z|=2} \frac{3 z^{2}}{z-4} d z=0$ because the singularity is outside the curve. (Application of Cauchy's integral theorem, not the integral formula.)
- $\oint_{|z|=2} \frac{3 z^{2}}{(z-1)(z-4)} d z=-2 \pi i$ by applying the formula with $f(z)=3 z^{2} /(z-4)$.

Cauchy's formula for derivatives

The basic formula says that

$$
f(b)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-b} d z
$$

Differentiate under the integral sign with respect to b to see that

$$
f^{\prime}(b)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{(z-b)^{2}} d z
$$

Differentiate again to see that

$$
f^{\prime \prime}(b)=\frac{2}{2 \pi i} \int_{C} \frac{f(z)}{(z-b)^{3}} d z
$$

And in general

$$
f^{(n)}(b)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{(z-b)^{n+1}} d z
$$

Assignment

- Parts a,b,c,e of Exercise 1 in Section IV.4.

