Ratio test and root test revisited

Theorem (Ratio test)
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If the limit exists and is less than 1, then Z Cn converges.
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If the limit exists and is greater than 1 (possibly +0c), then
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If the limit exists and equals 1, no deduction can be made.
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If the limit does not exist, no deduction can be made.

Theorem (Root test)

First compute lim \c,,|1/". The deductions are the same as in the
n—oo

ratio test.



A tricky example
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ind the radius of convergence of the series Z 37+ (1) z
Solution. The idea is that when n is large, the denominator is
approximately (4/)", so the series probably has the same radius of
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convergence as the series E (1_)’) z". The new series can be
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analyzed by the root test:
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The new series therefore has radius of convergence equal to 5



Continuation

How to justify that the approximation method is valid?

Observe that
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Since lim 21/" =1 and lim (1/4)Y/" =1, the squeeze theorem
. Mmoo n—o, . . .
for limits implies that the original series and the approximate series

have the same radius of convergence.



Assignment to hand in next time

Some review exercises:

1. When is the final exam?
2. Determine all values of the integer n for which /" = 1.

3. Determine all values of the complex number z for which
e =1.



