Recap: Laurent series

A series in positive and negative powers of $(z - z_0)$ is a *Laurent* series with center z_0 .

Example

Expand $\frac{4}{z^2-4}$ in a Laurent series with center 2. Solution:

$$\frac{4}{z^2 - 4} = \frac{4}{(z - 2)(z + 2)} = \frac{4}{(z - 2)(z - 2 + 4)}$$

$$= \frac{1}{z - 2} \cdot \frac{1}{\frac{z - 2}{4} + 1} = \frac{1}{z - 2} \cdot \frac{1}{1 - \left(\frac{-(z - 2)}{4}\right)}$$

$$\stackrel{\text{geometric}}{=} \frac{1}{z - 2} \cdot \left[1 + \left(\frac{-(z - 2)}{4}\right) + \left(\frac{-(z - 2)}{4}\right)^2 + \cdots\right]$$

$$= \frac{1}{z - 2} - \frac{1}{4} + \frac{z - 2}{16} - \cdots$$

valid when 0 < |z - 2| < 4.

Residues

If f(z) can be expanded in a Laurent series converging in a disk punctured at z_0 , then the coefficient of $\frac{1}{z-z_0}$ in the series is the residue of f at the point z_0 .

Moreover, if C is a simple closed curve in the punctured disk surrounding the point z_0 , then $\oint_C f(z) dz = 2\pi i \times (\text{residue at } z_0)$.

Example

Since

$$\frac{4}{z^2-4}=\frac{1}{z-2}-\frac{1}{4}+\frac{z-2}{16}-\cdots,$$

the integral

$$\oint_{|z-1| < e} \frac{4}{z^2 - 4} \, dz$$

equals $2\pi i \times 1$ (since the singular point 2 is inside the integration curve and the singular point -2 is outside).

But $\oint_{|z-1|<\pi} \frac{4}{z^2-4} dz$ is a different story, since both singular points are inside the integration curve.

Residue theorem

Theorem

When f is analytic on and inside a simple closed curve C except for some isolated singularities, then $\oint_C f(z) dz$ equals $2\pi i$ times the sum of the residues of f at the singular points inside C.

Computing residues: the easy case

If f(z) has a first-order singularity (a *simple pole*) at z_0 , then the Laurent series in a punctured disk with center z_0 has the form

$$\frac{r}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\cdots,$$

so r, the residue of f at z_0 , equals

$$\lim_{z\to z_0}(z-z_0)f(z).$$

Example If
$$f(z) = \frac{4}{z^2 - 4}$$
, then

$$Res(f,2) = \lim_{z \to 2} (z-2) \cdot \frac{4}{z^2 - 4} = \lim_{z \to 2} \frac{4}{z+2} = 1.$$

Assignment for next time

Parts (a), (b), and (c) of Exercise 1 in Section VII.1.