Quiz, September 14

1. Rewrite $e^{407 \pi i}$ in the form $a+b i$.

Solution. One way to solve the problem is to say that

$$
e^{407 \pi i}=e^{203(2 \pi i)+\pi i}=e^{\pi i}=-1 .
$$

Alternatively, you could directly apply Euler's formula to say that

$$
e^{407 \pi i}=\cos (407 \pi)+i \sin (407 \pi)=-1+0 i=-1
$$

2. Draw a picture of the set $\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$.

Solution.

If you write z as $x+y i$, then the set represents the points (x, y) in the plane for which y is unrestricted, and $0<x<1$. This set is a vertical strip, as indicated in the figure.
3. Find all three values of $(-8)^{1 / 3}$.

Solution. This problem is Exercise 1(e) from Section I.2.
Write -8 in polar form as $8 e^{\pi i}$. One value of $(-8)^{1 / 3}$ is therefore $8^{1 / 3} e^{\pi i / 3}$, or $2 e^{\pi i / 3}$, or $2 \cdot\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)$, or $1+\sqrt{3} i$.
Where do the other two values come from? In view of the periodicity of the complex exponential function, the expression $8 e^{\pi i}$ is equal to both $8 e^{3 \pi i}$ and $8 e^{5 \pi i}$, so the other values of $(-8)^{1 / 3}$ are $2 e^{3 \pi i / 3}$ and $2 e^{5 \pi i / 3}$. These values simplify to -2 and to $1-\sqrt{3} i$.

Notice the symmetry in the picture.

