Quiz, September 26

1. Find a complex number z with the property that $e^{i z}=2 i$.

Solution. One method is to take logarithms to see that $i z=\log (2 i)=\ln 2+i\left(\frac{\pi}{2}+2 n \pi\right)$, where n is an arbitrary integer. Multiplying through by $-i$ shows that $z=-i \ln 2+\frac{\pi}{2}+2 n \pi$. Since the problem does not ask for the most general solution, you could specialize to the principal value, which is $\frac{\pi}{2}-i \ln 2$.
2. Show that $\sin (i z)=i \sinh (z)$ for all values of the complex variable z.

Solution. The representation of the sine function in terms of the exponential function shows that

$$
\sin (i z)=\frac{e^{i \cdot i z}-e^{-i \cdot i z}}{2 i}=\frac{e^{-z}-e^{z}}{2 i}=\left(\frac{-1}{i}\right)\left(\frac{e^{z}-e^{-z}}{2}\right)
$$

But $-1 / i=i$, so the representation of the hyperbolic sine function in terms of the exponential function shows that the right-hand side is equal to $i \sinh (z)$, as required.
Remark. This formula is one of many in Section I. 8 of the textbook.
3. Draw a picture of the set of values of the complex variable z for which $|z|=|\operatorname{Re} z|+|\operatorname{Im} z|$.

Solution. Write z as $x+y i$. Then the equation says that $\sqrt{x^{2}+y^{2}}=|x|+|y|$. Both sides are positive real numbers (or possibly 0), so squaring both sides gives an equivalent equation:

$$
x^{2}+y^{2}=|x|^{2}+2|x||y|+|y|^{2} .
$$

But x and y are real numbers, so $|x|^{2}=x^{2}$, and $|y|^{2}=y^{2}$. Canceling the common terms shows that $0=2|x||y|$.
A product is equal to 0 precisely when one of the factors is equal to 0 , so either $x=0$ or $y=0$ (or both). The solution set therefore consists of all the points on either coordinate axis. You could draw the picture as follows:

Remark. This problem is part of Exercise I.1.4 in the textbook.

