Review exercises

1. Determine the minimum value of $\left|\sin \left(\frac{\pi}{2}+i y\right)\right|$ when y runs over all real numbers.
2. Suppose $w=\frac{1+z}{1-z}$. Determine the image in the w-plane of $\{z:|z|<1\}$, the unit disk in the z-plane.
3. What are all the possible values of the line integral $\int_{C} \frac{1}{z^{2}+1} d z$ when C varies over all possible closed paths?
4. Can you find a rational function f with the property that the Taylor series of f with center 2 has radius of convergence equal to 3 and the Taylor series of f with center -2 has radius of convergence equal to 1 ?

Solution to Problem 1. Since $\sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$, the expression can be rewritten in terms of the complex exponential function:

$$
\left|\sin \left(\frac{\pi}{2}+i y\right)\right|=\left|\frac{1}{2 i}\left(e^{i \frac{\pi}{2}-y}-e^{-i \frac{\pi}{2}+y}\right)\right|=\left|\frac{1}{2 i}\left(i e^{-y}-(-i) e^{y}\right)\right|=\frac{1}{2}\left(e^{y}+e^{-y}\right)=\cosh (y) .
$$

If you have a picture of the hyperbolic cosine function in your head, then you are done: the minimum value is 1 , taken when $y=0$.

If you do not know the graph of this function, then you can work out the answer by using tools from first-semester real calculus. Compute the derivative:

$$
\cosh ^{\prime}(y)=\frac{1}{2}\left(e^{y}-e^{-y}\right) .
$$

If $y>0$, then $e^{y}>1$ and $e^{-y}<1$, so $\cosh ^{\prime}(y)>0$. By symmetry, $\cosh ^{\prime}(y)<0$ when $y<0$. Thus the function $\cosh (y)$ is decreasing when $y<0$ and increasing when $y>0$. Accordingly, the function has a global minimum when $y=0$. Moreover, the value of the function at the origin is $\frac{1}{2}\left(e^{0}+e^{-0}\right)$, or 1 . Incidentally, the graph is concave up, since $\cosh ^{\prime \prime}(y)=\cosh (y)>0$.

Solution to Problem 2. The problem can be solved by using general properties of fractional linear transformations. Since the point 1 in the z-plane maps to the point ∞ in the w-plane, the image of the unit circle (where $|z|=1$) must be a line. Which line?

Since the coefficients of the transformation are real numbers, the real axis in the z-plane maps to the real axis in the w-plane. Fractional linear transformations are conformal, and the unit circle intersects the real axis orthogonally at the point -1 in the z-plane, so the image line intersects the real axis orthogonally at the image of -1 , which is the point 0 in the w-plane.

Therefore the image of the unit circle is a vertical line in the w-plane passing through the point 0 . The points inside the unit circle in the z-plane must map to a half-plane on one side of the vertical line in the w-plane. Which side?

Review exercises

Since the point 0 in the z-plane maps to the point 1 in the w-plane, the image half-plane must be the right-hand half-plane, not the left-hand half-plane. Thus the image in the w-plane is the set where $\operatorname{Re}(w)>0$.

If you prefer formulas to geometry, then you could analyze the mapping as follows:

$$
w=\frac{1+z}{1-z}=\frac{1+z}{1-z} \cdot \frac{1-\bar{z}}{1-\bar{z}}=\frac{1-|z|^{2}+z-\bar{z}}{|1-z|^{2}}=\frac{1-|z|^{2}}{|1-z|^{2}}+\frac{2 i \operatorname{Im}(z)}{|1-z|^{2}}
$$

Therefore $|z|<1$ if and only if $\operatorname{Re}(w)>0$. (Probably you would not think of making this calculation until you first plotted some points to get a feel for what the answer is likely to be.)

Solution to Problem 3. The integrand has singularities when $z= \pm i$, and

$$
\operatorname{Res}\left(\frac{1}{z^{2}+1}, i\right)=\left.\frac{1}{2 z}\right|_{z=i}=\frac{1}{2 i}, \quad \text { and } \quad \operatorname{Res}\left(\frac{1}{z^{2}+1},-i\right)=\left.\frac{1}{2 z}\right|_{z=-i}=-\frac{1}{2 i} .
$$

If C is a simple closed curve, oriented counterclockwise, then the residue theorem implies that the value of $\int_{C} \frac{1}{z^{2}+1} d z$ is $2 \pi i$ times the sum of the residues at the singularities inside the curve. If the curve surrounds neither singular point, then the value of the integral is 0 . If the curve surrounds only the singular point i, then the value of the integral is $2 \pi i \times \frac{1}{2 i}$, or π. If the curve surrounds only the singular point $-i$, then the value of the integral is $-\pi$. If the curve is oriented clockwise instead of counterclockwise, then the sign of the answer changes, but the possibilities are still the three values $0, \pi$, and $-\pi$.

Something new can happen if the curve is not simple, that is, if the curve crosses itself. A curve with self-intersections can be broken up into two or more simple closed curves, so the integral around such a curve amounts to a sum of integrals over simple closed curves. In other words, a curve that winds around one of the singular points multiple times has an integral that counts the residue at an enclosed singularity multiple times. Accordingly, it is possible to construct a curve C for which the integral equals any integer multiple of π.

There is yet another possibility. If the curve C passes through one of the singular points $\pm i$, where the integrand is undefined, then the integral does not have a well-defined value. (More precisely, the integral-which ultimately represents a certain limit-is divergent.)

Solution to Problem 4. The simplest series in powers of $(z-2)$ that has radius of convergence equal to 3 is the geometric series

$$
\sum_{n=0}^{\infty}\left(\frac{z-2}{3}\right)^{n}
$$

which sums (when $|z-2|<3$) to the rational function

$$
\frac{1}{1-\frac{z-2}{3}}, \quad \text { or } \quad \frac{3}{5-z}
$$

Review exercises

The simplest series in powers of $(z+2)$ that has radius of convergence equal to 1 is the geometric series

$$
\sum_{n=0}^{\infty}(z+2)^{n}
$$

which sums (when $|z+2|<1$) to the rational function

$$
\frac{1}{1-(z+2)}, \quad \text { or } \quad \frac{-1}{z+1}
$$

These two rational functions are not the same function, so the problem is not yet solved. One fix is to modify the first series:

$$
-\frac{1}{3} \sum_{n=0}^{\infty}\left(-\frac{z-2}{3}\right)^{n}=\frac{-1 / 3}{1-\left(-\frac{z-2}{3}\right)}=\frac{-1}{z+1}
$$

Accordingly, the rational function $\frac{-1}{z+1}$ has a series expansion in powers of $(z-2)$ with radius of convergence 3 and also a series expansion in powers of $(z+2)$ with radius of convergence 1 . Thus $\frac{-1}{z+1}$ solves the problem.

The high-level approach to this problem is to realize that the Taylor series with center z_{0} for a given analytic function converges inside the largest disk centered at z_{0} in which the function remains analytic (and the Taylor series converges in no larger concentric disk). So the radius of convergence of the Taylor series of a function can be read off by finding the distance from the center point to the nearest singular point of the function.

Since the only singularity of the function $\frac{1}{z+1}$ is the point -1 , the radius of convergence of the Taylor series about the point 2 is the distance from 2 to -1 : namely, radius 3. And the radius of convergence of the Taylor series about the point -2 is the distance from -2 to -1 : namely, radius 1. So the function $\frac{1}{z+1}$ solves the problem. Many other solutions are possible: the function $\frac{42 z+17}{(z+1)^{3}}$ works for the same reason.

