The theorem of Mertens about the Cauchy product of infinite series

If the two series $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ both converge absolutely, then one can freely rearrange terms to find that

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\sum_{n=0}^{\infty} c_{n}, \quad \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} . \tag{1}
\end{equation*}
$$

Franz Carl Joseph Mertens (1840-1927) observed ${ }^{1}$ that (1) still holds when only one of the first two series, say $\sum_{n} a_{n}$, converges absolutely, as long as the second series $\sum_{n} b_{n}$ converges conditionally. The argument of Mertens goes as follows.

Proof. Let A_{n}, B_{n}, and C_{n} denote the partial sums $\sum_{k=0}^{n} a_{k}, \sum_{k=0}^{n} b_{k}$, and $\sum_{k=0}^{n} c_{k}$. It suffices to prove that both (i) $\lim _{n \rightarrow \infty}\left(C_{2 n}-A_{n} B_{n}\right)=0$ and (ii) $\lim _{n \rightarrow \infty}\left(C_{2 n+1}-A_{n+1} B_{n}\right)=0$. For (i), observe that $C_{2 n}-A_{n} B_{n}$ equals

$$
\begin{align*}
& a_{0}\left(b_{n+1}+b_{n+2}+\cdots+b_{2 n}\right)+a_{1}\left(b_{n+1}+b_{n+2}+\cdots+b_{2 n-1}\right)+\cdots+a_{n-1} b_{n+1} \\
& +a_{n+1}\left(b_{0}+b_{1}+\cdots+b_{n-1}\right)+a_{n+2}\left(b_{0}+b_{1}+\cdots+b_{n-2}\right)+\cdots+a_{2 n} b_{0} . \tag{2}
\end{align*}
$$

By hypothesis, there are numbers A and B such that $\sum_{j=0}^{m}\left|a_{j}\right|<A$ and $\left|\sum_{j=0}^{m} b_{j}\right|<B$ for all m. Fix a positive ϵ. By hypothesis, there exists a number N such that when $n \geq N$ and $m \geq 1$, one has

$$
\sum_{j=n+1}^{n+m}\left|a_{j}\right|<\frac{\epsilon}{A+B} \quad \text { and } \quad\left|\sum_{j=n+1}^{n+m} b_{j}\right|<\frac{\epsilon}{A+B}
$$

Now (2) shows that when $n \geq N$, one has that $\left|C_{2 n}-A_{n} B_{n}\right|<A \cdot \frac{\epsilon}{A+B}+$ $B \cdot \frac{\epsilon}{A+B}=\epsilon$. Thus $\lim _{n \rightarrow \infty}\left(C_{2 n}-A_{n} B_{n}\right)=0$ as claimed.

To establish the limit (ii), observe that $C_{2 n+1}-A_{n+1} B_{n}$ equals

$$
\begin{aligned}
& a_{0}\left(b_{n+1}+b_{n+2}+\cdots+b_{2 n+1}\right)+a_{1}\left(b_{n+1}+b_{n+2}+\cdots+b_{2 n}\right)+\cdots+a_{n} b_{n+1} \\
& +a_{n+2}\left(b_{0}+b_{1}+\cdots+b_{n-1}\right)+a_{n+3}\left(b_{0}+b_{1}+\cdots+b_{n-2}\right)+\cdots+a_{2 n+1} b_{0}
\end{aligned}
$$

and argue analogously to case (i).

[^0]
[^0]: ${ }^{1}$ F. Mertens, Ueber die Multiplicationsregel für zwei unendliche Reihen, Journal für die Reine und Angewandte Mathematik 79 (1874) 182-184.

