
Math 618 Take-home Examination 2 March 19, 2007

Instructions Do any five of the following six problems. You may consult
the textbook but not other sources; in particular, you may not ask another
person for help solving the problems. You may cite and use results proved
in the textbook or in class. Please submit your solutions to me in my office
(Milner 202) before 4:00 p.m. on Monday, March 26.

1. (a) Prove that if the function u is harmonic on the open disk1 of
radius R centered at 0, and if u takes only positive values, then

R − r

R + r
u(0) ≤ u(reiθ) ≤ R + r

R − r
u(0), θ arbitrary, 0 < r < R.

This useful inequality is known as Harnack’s inequality for posi-
tive2 harmonic functions.

You may cite (without proof) the result of a homework exercise
that you solved previously: namely, the Poisson kernel for the disk
of radius R is equal to

R2 − r2

R2 + r2 − 2rR cos(θ − φ)
.

(b) Prove that if K is a compact subset of a region D, then there
exists a number c (depending on both K and D) such that for
every positive harmonic function u on D, one has

max{ u(z) : z ∈ K } ≤ c min{ u(z) : z ∈ K }.

This says that the values of a positive harmonic function are all
comparable to each other on a compact set. The point here is that
the number c is independent of the function u.

Suggestion: cover K by disks of radius less than half the distance
to the boundary of D.

1As mentioned on the first exam, there is little loss of generality in assuming that u is
harmonic on the closed disk. One can work on a disk of radius R− ǫ and let ǫ → 0 at the
end of the argument.

2It would be almost the same to assume that u is merely non-negative (rather than
strictly positive). By the minimum principle for harmonic functions, a non-negative har-
monic function cannot take the value 0 in the open disk unless the function is identically
equal to 0.
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2. This problem generalizes the mean-value property of harmonic func-
tions. Suppose that u is a harmonic function on the open annulus
{ z ∈ C : r1 < |z| < r2 }, where 0 ≤ r1 < r2 ≤ ∞. Let A(r) denote the
average of u around the circle of radius r, that is,

A(r) =
1

2π

∫

2π

0

u(reiθ) dθ, r1 < r < r2.

Prove that there are constants a and b such that A(r) = a + b log r.

[One approach is to show that rA′(r) is constant by applying Green’s
theorem to a region bounded by two concentric circles. The chain rule

shows that on a circle with center 0, the differential
∂u

∂x
dy − ∂u

∂y
dx is

equal to
∂u

∂r
r dθ, which can also be written

∂u

∂n
ds.]

3. Prove the following proposition, which is a special case of a result known
as Bôcher’s theorem.

If u is a non-negative harmonic function on the punctured closed disk
{ z ∈ C : 0 < |z| ≤ 1 } that equals 0 on the boundary circle (that is,
u(z) = 0 when |z| = 1), then there is a non-negative constant b such
that u(z) = b log(1/|z|).
Hints:

(a) First deduce from the preceding problem that the average of u on
a circle of radius r has the form b log(1/r).

(b) We may as well assume that u is strictly positive in the open
punctured disk. Why?

(c) Deduce from the first problem (about Harnack’s inequality) that
there is some positive number c such that u(z) ≥ c log(1/|z|) in
the punctured disk. (Take the compact set K to be the circle of
radius 1/2 and observe via dilation that the same constant works
for any smaller circle.)

(d) There is a maximal value of c for which u(z) ≥ c log(1/|z|) in the
punctured disk. Show that for this maximal c, the inequality must
be an equality. (Otherwise the same argument as in the preceding
part would produce a bigger c.)
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4. This problem responds to a question raised in class about the nature of
isolated singularities of harmonic functions. It turns out that the two
examples we considered in class essentially exhaust the possibilities.

More precisely, if u is a (real-valued) harmonic function in a punctured
neighborhood of 0, then one of the following three cases holds.

(i) The harmonic function u is bounded in a punctured neighborhood
of 0. In this case, the isolated singularity is removable.

(ii) We have limz→0 |u(z)| = ∞. In this case, there is a non-zero
constant b such that u(z) − b log(1/|z|) is a harmonic function
with a removable singularity at 0. (This is Bôcher’s theorem.)

(iii) If neither of the preceding cases occurs, then there is one sequence
of points tending to 0 along which |u| is unbounded and another
sequence along which |u| is bounded. In this situation, u assumes
every real value infinitely often.

Part (i) is established in section 20D of the textbook. Your job is to
handle parts (ii) and (iii).

Hints:

(a) In part (ii), we may as well work on the unit disk, and we can
assume that u is a positive function. (Why?) Subtract from u
the Poisson integral of its boundary values; why is this differ-
ence a non-negative harmonic function? Apply the special case of
Bôcher’s theorem considered in the previous problem.

(b) In part (iii), the range of u is a connected subset of R, so the range
is an interval (possibly an unbounded interval). If the range of u
is not all of R, then u is bounded from one side, say below. Then
u(z) + log(1/|z|) is a function of the type considered in part (ii).
Deduce a contradiction.
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5. In this problem, you will prove an old theorem of the Danish math-
ematician and Olympic medalist Harald Bohr (brother of Niels Bohr,

the physics Nobelist) stating that if

∣

∣

∣

∣

∞
∑

n=0

anz
n

∣

∣

∣

∣

≤ 1 when |z| ≤ 1, then

∞
∑

n=0

|anzn| ≤ 1 when |z| ≤ 1/3, and the number 1/3 is the best possible.

The intuition behind the theorem is that moving the absolute values
inside the sum should increase the sum (by the triangle inequality), but
decreasing |z| should decrease the sum; these two competing influences
should have a balance point. The surprising part of the theorem is that
there is a uniform balance point that serves for all functions simultane-
ously; one might expect a priori that it would be necessary to take |z|
closer and closer to 0 as the function varies.

Generalizations and applications of Bohr’s theorem have attracted con-
siderable attention during the past decade, and even two Fields medal-
ists have contributed to the subject.3

Your proof should have two parts, as follows.

(a) Show that the radius 1/3 does work for all convergent power series
that are bounded by 1. Hint: apply the inequality from problem 5
of the first exam.

(b) Demonstrate that the radius 1/3 is sharp by finding an example
showing that the conclusion would fail if the number 1/3 were
replaced by any larger number. Hint: study the Möbius transfor-

mation
z − a

1 − az
when a is a real number slightly smaller than 1.

3E. Bombieri and J. Bourgain, A remark on Bohr’s inequality, International Mathe-

matics Research Notices 2004, no. 80, 4307–4330.
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6. In this problem, you will show that the group of analytic automor-
phisms of the annulus { z ∈ C : r < |z| < R } consists of the rotations
z 7→ eiθz, the inversion z 7→ rR/z, and compositions of these transfor-
mations.

The main technical difficulty in the proof is that the automorphisms
are not known a priori to extend continuously to the boundary of the
annulus. One can overcome this difficulty by using the strong form of
the Schwarz reflection principle in section 20F of the textbook.

Hints:

(a) If f is any automorphism of the annulus, then f maps the circle
{ z ∈ C : |z| =

√
rR } to some simple closed curve in the (image)

annulus. After composing with the inversion, if necessary, we may
assume that the “inside” of the circle maps to the “inside” of the
image curve, and the outside maps to the outside. (Why?)

(b) After the preceding normalization, if {zn} is a sequence of points
of the annulus such that |zn| → R, then |f(zn)| → R. (Why?)

(c) Since the circle { z ∈ C : |z| = R } can be mapped to the real
axis by a Möbius transformation, the strong Schwarz reflection
principle implies that f continues analytically across the outer
circle. (To what region does f extend?) Similarly, f extends
across the inner circle.

(d) Iterate the reflection process to deduce that f extends to an au-
tomorphism of the punctured plane.

(e) Argue that the origin is a removable singularity, and f extends to
an automorphism of the whole plane fixing the origin. Hence f is
a rotation.
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