
Math 618 Take-home Examination 3 April 20, 2007

Instructions Do any five of the following six problems. You may consult
the textbook but not other sources; in particular, you may not ask another
person for help solving the problems. You may cite and use results proved
in the textbook or in class. Please submit your solutions to me in my office
(Milner 202) before 4:00 p.m. on Friday, April 27.

1. In this problem, you will show how to compute the order of an entire
function directly from the Maclaurin series coefficients. Recall that if
f is an entire function, then M(r) denotes max{ |f(z)| : |z| = r }, and
the order λ of f is defined as follows:

λ = lim sup
r→∞

log log M(r)

log r
.

Suppose that f(z) =
∑∞

n=0 cnz
n, and define a number β as follows:

β = lim sup
n→∞

n log n

log 1
|cn|

(interpret the fraction as 0 if cn = 0).

Your task is to prove that in fact β = λ.

Suggestion Prove separately (a) that β ≤ λ and (b) that λ ≤ β.

(a) Fix a positive ǫ. By the definition of order, M(r) < erλ+ǫ

for
sufficiently large r. Bound |cn| for large n by applying Cauchy’s
estimate with r = n1/(λ+ǫ), and deduce that β ≤ λ + ǫ. Let ǫ ↓ 0.

(b) Fix a positive ǫ. Deduce from the definition of β that |cn| <
n−n/(β+ǫ) for sufficiently large n, and use the triangle inequality to
bound M(r) by

∑∞
n=0 |cn| r

n. By splitting the sum at an integer n
close to (2r)β+ǫ, show that λ < β + 2ǫ. Let ǫ ↓ 0.

Remark The expression for the order in terms of the series coeffi-
cients makes it easy to write down an entire function of any prescribed
positive order a: namely, the series

∑∞
n=1 zn/nn/a does the job. More-

over, the series
∑∞

n=1 zn/nn2

represents a non-polynomial entire func-
tion of order 0.
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2. You know that there exists an entire function with prescribed zeroes of
prescribed orders, subject to the necessary condition that the zeroes do
not accumulate [Weierstrass]. You can immediately deduce by taking
the reciprocal that there exists a meromorphic function in the plane
with prescribed poles of prescribed orders.

More is true: it is possible to prescribe not only the locations and the
orders of the poles of the meromorphic function but also the principal

part of the Laurent series at each pole. More precisely, suppose that
{zj}

∞
j=1 is a sequence of distinct points having no accumulation point

in the finite plane, and {pj}
∞
j=1 is a sequence of polynomials. You can

think of pj(
1

z−zj
) as being the principal part of a Laurent series based at

the point zj . Mittag-Leffler’s theorem says that there exists a function f
meromorphic in the plane, with poles only at the points zj , such that
for each j, the function f(z) − pj(

1
z−zj

) has a removable singularity

at zj. In other words, the function f has the specified principal parts
at the specified poles.

Your task in this problem is to prove Mittag-Leffler’s theorem.

Hint The first try is
∑∞

j=1 pj(
1

z−zj
), but this series need not converge.

Show, however, that there exist polynomials qj such that the series
∑∞

j=1

(

pj(
1

z−zj
) − qj(z)

)

does converge (uniformly on compact sets that

avoid the sequence of poles). In fact, qj(z) can be taken to be a suitable
partial sum of the Maclaurin series of pj(

1
z−zj

).

Remarks Notice that the theorem of Mittag-Leffler uses infinite se-
ries and additive convergence factors, while the theorem of Weierstrass
uses infinite products and multiplicative convergence factors.

Mittag-Leffler proved much more than is stated above.1 First of all,
an analogous theorem holds on a general planar region. Secondly, one
can simultaneously prescribe the locations of both the zeroes and the
poles of a meromorphic function. Thirdly, one can prescribe any finite
number of terms of the Laurent series (not just the terms containing
negative powers).

1G. Mittag-Leffler, “Sur la représentation analytique des fonctions monogènes uni-
formes d’une variable indépendante,” Acta Math. 4 (1884), 1–79.
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3. You know Montel’s theorem: a family of analytic functions on a planar
region is a normal family (in the sense that every sequence of functions
in the family admits a subsequence that converges uniformly on com-
pact sets to an analytic function) if and only if the family is locally
bounded, that is, for every compact subset K there is a constant C
such that |f(z)| ≤ C for all z in K and every f in the family.

In this problem, you are to prove Marty’s theorem, which gives a nec-
essary and sufficient condition for a family of analytic functions on a
planar region to be a normal family in the extended sense that ev-
ery sequence of functions in the family admits either a subsequence
that converges uniformly on compact sets to an analytic function or a
subsequence that converges uniformly on compact sets to the constant
function ∞. Marty’s criterion is that for every compact subset K there

is a constant C such that
|f ′(z)|

1 + |f(z)|2
≤ C for all z in K and every f

in the family.

Hints If the family is normal, but Marty’s criterion is violated, then
there exists a compact set and a sequence of functions such that . . . ;
pass to a convergent subsequence and deduce a contradiction.

In the converse direction, the key issue in deducing normality from
Marty’s criterion is to prove some uniform control: you need to know
that if |f(z)| is small (respectively large) at a point, then |f(z)| remains
small (respectively large) in a neighborhood of the point (the neighbor-
hood being independent of the function). One way to get this control

is to compute
∂

∂r
tan−1 |f(z0 + reiθ)| by the chain rule and deduce that

∣

∣tan−1 |f(z0 + Reiθ)| − tan−1 |f(z0)|
∣

∣ ≤

∫ R

0

|f ′(z0 + reiθ)|

1 + |f(z0 + reiθ)|2
dr.

Remark The quantity
|f ′(z)|

1 + |f(z)|2
, sometimes called the spherical

derivative, has the useful property that it is unchanged when f is re-
placed by its reciprocal 1/f . Marty’s criterion is local boundedness of
the family of spherical derivatives.
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4. The word “order” appears in several different mathematical contexts,
one of them being the theory of entire functions, and the same remark
applies to the word “genus”. If f is an entire function, and

f(z) = zmeg(z)
∞
∏

n=1

(

1 −
z

zn

)

exp

(

z

zn

+
1

2

(

z

zn

)2

+ · · · +
1

p

(

z

zn

)p
)

,

where g is a polynomial and p is the minimal non-negative integer for
which the infinite product converges, then the genus of f is the maxi-
mum of p and the degree of g. (Set p equal to 0 if the infinite product
already converges without the exponential factors; in particular, p = 0
if the function has only a finite number of zeroes.)

Hadamard’s factorization theorem, which we proved in class, can be
rephrased as the statement that the genus of an entire function does

not exceed its order.

Your task in this problem is to prove a sort of converse to Hadamard’s
theorem: namely, the order of an entire function does not exceed the

genus by more than 1.

Hints The main difficulty is estimating the rate of growth of the
infinite product. Apply Exercise 31.2 in the textbook to show that
the typical term in the product is dominated by exp |z/zn|

p+1 when
|z/zn| < 1/2. Use elementary estimates to show that there is a con-
stant c such that the typical term in the product is dominated by
exp c|z/zn|

p ≤ exp 2c|z/zn|
p+1 when |z/zn| ≥ 1/2. Then recall from

class that p is the smallest non-negative integer for which the series
∑

n 1/|zn|
p+1 converges.

Remark Combining the italicized statements above shows that

genus ≤ order ≤ 1 + genus.

This double inequality is sharp: examples show that the order can
assume any of the allowed values.
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5. In this problem, you are to supply proofs (modulo one ingredient) of
Picard’s theorems about the range of analytic functions. The ingredient
that you may assume without proof is the following result of Montel.

Montel’s fundamental normality criterion Suppose a and b are

two distinct complex numbers. The family of analytic functions on a

region that take neither the value a nor the value b is a normal family

in the region. Here normality is understood in the extended sense that
the constant function ∞ is admitted as a possible limit function.

(i) Picard’s little theorem The range of a nonconstant entire func-

tion cannot omit two values.

For the proof, suppose that f is an entire function whose range does
omit two values, and consider the family of entire functions {fn}

∞
n=1

defined by fn(z) = f(nz). Apply Montel’s fundamental normality cri-
terion to deduce that f must be constant.

(ii) Picard’s great theorem In every punctured neighborhood of

an essential singularity, an analytic function assumes every complex

value—with one possible exception—infinitely often.

For the proof, assume without loss of generality that the essential sin-
gularity is at the origin, and suppose there are two values each taken
only a finite number of times. After shrinking the neighborhood, one
can assume that there are two omitted values. Consider the family of
functions {fn}

∞
n=1 defined by fn(z) = f(z/n), and apply Montel’s cri-

terion, remembering to account for the possibility of a limit function
equal to the constant ∞.

Remark Picard’s great theorem subsumes the little theorem, for an
entire function either has an essential singularity at infinity or is a poly-
nomial (and a nonconstant polynomial assumes every complex value).
Thus one can strengthen the little theorem to say that a non-polynomial
entire function takes every complex value infinitely often, with one pos-
sible exception.
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6. Suppose D is a bounded, simply connected planar region, and let p be a
point in D. Consider the family of analytic functions f on D such that
f maps D into (not necessarily onto) the unit disk, f(p) = 0 = f ′(p),
and f ′′(p) is a positive real number.

(a) Show that there is an extremal function that maximizes the value
of f ′′(p) within the indicated class.

(b) Show that the extremal function is unique by showing that it is
equal to the square of the Riemann mapping function.
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