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1 Introduction

Although Karl Weierstrass studied holomorphic functions of two variables already in the
nineteenth century, the modern theory of several complex variables may be dated to the
researches of Friedrich (Fritz) Hartogs (1874–1943) in the first decade of the twentieth
century.1

Some parts of the theory of holomorphic functions—the maximum principle, for
example—are essentially the same in all dimensions. The most interesting parts of the
theory of several complex variables are the features that differ from the one-dimensional
theory.

The one-dimensional theory is illuminated by several complementary points of view:
power series, integral representations, partial differential equations, and geometry. The
multi-dimensional theory reveals striking new phenomena from each of these points of
view.

1.1 Power series

A one-variable power series converges inside a certain disc and diverges outside the
closure of the disc. The convergence region for a two-dimensional power series, however,
can have infinitely many different shapes. For instance, the largest open set in which the
series

∑∞
n=0

∑∞
m=0 znwm converges is the unit bidisc { (z, w) : |z| < 1 and |w| < 1 }, while

the series
∑∞

n=0 znwn converges in the unbounded hyperbolic region where |zw| < 1.
The theory of one-dimensional power series bifurcates into the theory of entire func-

tions and the theory of functions on the unit disc. In higher dimensions, studying power
series already leads to function theory on infinitely many different types of domains.
A natural question, to be answered presently, is to characterize the domains that are
convergence domains for multi-variable power series.

Exercise 1. Exhibit a two-variable power series whose convergence domain is the unit
ball { (z, w) : |z|2 + |w|2 < 1 }.

Hartogs discovered that a function holomorphic in a neighborhood of the boundary
of the unit bidisc automatically extends to be holomorphic on the interior of the bidisc;
one can prove this property by considering one-variable Laurent series on slices. Thus,

1A student of Pringsheim, Hartogs belonged to the Munich school of mathematicians. Because of their
Jewish heritage, both Pringsheim and Hartogs suffered greatly under the Nazi regime in the 1930s.
Pringsheim, a wealthy man, managed to buy his way out of Germany into Switzerland, where he
died at an advanced age in 1941. The situation for Hartogs, however, grew ever more desperate,
and in 1943 he chose to end his own life by an overdose of barbiturates rather than to be sent to a
death camp.
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1 Introduction

in dramatic contrast to the situation in one variable, there are domains in C2 on which
all holomorphic functions extend to a larger domain. A natural question, to be answered
presently, is to characterize the domains of holomorphy, that is, the natural domains of
existence of holomorphic functions.

The discovery of Hartogs also shows that holomorphic functions of several variables
never have isolated singularities and never have isolated zeroes, in contrast to the one-
variable case.

Exercise 2. Let p(z, w) be a polynomial in two variables. Show that if the zero set of p
is compact, then p is constant.

1.2 Integral representations

The one-variable Cauchy integral formula for a holomorphic function f inside a simple
closed curve C says that

f(z) =
1

2πi

∫

C

f(w)

w − z
dw for z inside C.

A remarkable feature of this formula is that the kernel (w − z)−1 is both universal
(independent of the domain) and holomorphic in the free variable. There is no such
formula in higher dimensions! There are integral representations with a holomorphic
kernel, but they depend on the domain, and there is a universal integral representation,
but its kernel is not holomorphic. There is a huge literature about constructing and
analyzing integral representations for various special types of domains.

For the special case of a polydisc, one can simply iterate the Cauchy integral. A
reasonable working definition of “holomorphic function” is a function on a domain in Cn

that is holomorphic in each variable separately and continuous in all variables jointly.
If f is holomorphic in this sense on the closed unit polydisc, then iterating the Cauchy
integral shows that

f(z) =

(
1

2πi

)n ∫

|w1|=1

. . .

∫

|wn|=1

f(w1, . . . , wn)

(w1 − z1) · · · (wn − zn)
dw1 . . . dwn

when the point z with coordinates (z1, . . . , zn) is in the interior of the polydisc. (The
assumed continuity of f guarantees that this integral makes sense and can be evaluated
in any order by Fubini’s theorem.) By the same arguments as in the single-variable case,
this iterated Cauchy formula suffices to establish standard local properties of holomor-
phic functions. For example, holomorphic functions are infinitely differentiable, satisfy
the Cauchy-Riemann equations in each variable, obey a local maximum principle, and
admit local power series expansions. Moreover, a normal limit of holomorphic functions
is holomorphic.

Exercise 3. Prove a multi-dimensional version of Hurwitz’s theorem: the normal limit
of nowhere-zero holomorphic functions is either nowhere zero or identically zero.
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1 Introduction

1.3 Partial differential equations

The one-dimensional Cauchy-Riemann equations are a pair of real partial differential
equations for a pair of functions (the real and imaginary parts of a holomorphic function).
In Cn, there are still two functions, but there are 2n equations. Thus when n > 1,
the inhomogeneous Cauchy-Riemann equations form an overdetermined system; hence
there is a necessary compatibility condition for solvability. This feature is a significant
difference from the one-variable theory.

When the inhomogeneous Cauchy-Riemann equations are solvable in C
2 (or in higher

dimension), there is a solution with compact support in case of compactly supported
data. When n = 1, however, it is not always possible to solve the inhomogeneous Cauchy-
Riemann equations while maintaining compact support. The Hartogs phenomenon can
be interpreted as a manifestation of this difference.

1.4 Geometry

According to the one-variable Riemann mapping theorem, every bounded simply con-
nected planar domain is biholomorphically equivalent to the unit disc. In higher dimen-
sion, there is no such simple topological classification of biholomorphically equivalent
domains. Indeed, the unit ball in C2 and the unit bidisc in C2 are holomorphically
inequivalent domains.

One way to understand intuitively why the situation changes in dimension 2 is to
realize that there is extra room in the tangent space. In C2, there is room for one-
dimensional complex analysis to happen in the tangent space to the boundary of a
domain. Indeed, the boundary of the bidisc contains pieces of one-dimensional complex
affine subspaces, while the boundary of the two-dimensional ball does not contain any
such analytic disc.

Similarly, the zero set of a (not identically zero) holomorphic function in C2 is a one-
dimensional complex variety, while the zero set of a holomorphic function in C

1 is a
zero-dimensional variety (that is, a discrete set of points).

There is a mismatch between the dimension of the domain and the dimension of the
range of a multi-variable holomorphic function. One might, however, expect an equidi-
mensional holomorphic mapping to be analogous to a one-variable holomorphic function.
Here too there are surprises. For instance, there exists a biholomorphic mapping from all
of C2 onto a proper subset of C2 whose complement has interior points. Such a mapping
is called a Fatou-Bieberbach map.

Exercise 4. The image of a Fatou-Bieberbach map cannot have a bounded complement.
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2 Power series

Examples in the introduction showed that the domain of convergence of a multi-variable
power series can have various shapes; in particular, the domain need not be a convex set.
Nonetheless, there is a special kind of convexity property that characterizes convergence
domains.

Developing the theory requires some notation. A point (z1, . . . , zn) in Cn may be
abbreviated simply by z. If α is a point of C

n whose coordinates are all non-negative
integers, then zα means the product zα1

1 . . . zαn
n , the notation α! abbreviates the product

α1! . . . αn!, and |α| means α1 + · · ·+ αn. A multi-variable power series can be written in
the form

∑
α cαzα using this “multi-index” notation.

There is a little awkwardness in talking about convergence of a multi-variable power
series

∑
α cαzα, because convergence of a series depends (in general) on the order of

summation, and there is no canonical ordering of n-tuples of non-negative integers when
n > 1. For instance, the series

∑
α cαzα might mean either limk→∞

∑k
j=0

∑
|α|=j cαzα

or limk→∞

∑k
α1=0 · · ·

∑k
αn=0 cαzα. In general, these two limits need not be equal. It is

convenient to restrict attention to absolute convergence, thereby eliminating any concern
about the order of terms.

2.1 Domain of convergence

The domain of convergence of a power series is the interior of the set of points at which
the series converges absolutely.1 For example, the set where the two-variable power
series

∑∞
n=1 znwn! converges absolutely is the union of three sets: the points (z, w) for

which |w| < 1 and z is arbitrary, the points (0, w) for arbitrary w, and the points (z, w)
for which |w| = 1 and |z| < 1. The domain of convergence is the first of these sets.

Since convergence domains are defined by considering absolute convergence, it is ob-
vious that every convergence domain is multi-circular : if a point (z1, . . . , zn) is in the
domain, then so is every point (λ1z1, . . . , λnzn) such that |λ1| = · · · = |λn| = 1. More-
over, a simple application of the comparison test for convergence of series shows that
the point (λ1z1, . . . , λnzn) is still in the convergence domain when |λj| ≤ 1 for each j.
Thus every convergence domain is a union of polydiscs centered at the origin.

By expanding the Cauchy kernel in a power series, one finds from the iterated Cauchy
formula (just as in the one-variable case) that a function holomorphic in a polydisc, or
in a union of polydiscs with a common center, admits a power series expansion that
converges in the (open) polydisc (or in the union of polydiscs).

1Usually the domain of convergence is assumed implicitly to be non-void. Thus one would not ordi-
narily speak of the domain of convergence of the series

∑
∞

n=1
n! znwn.
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2 Power series

A multi-circular domain is also called a Reinhardt domain. A Reinhardt domain
is called complete if whenever a point z is in the domain, then the polydisc {w :
|w1| ≤ |z1|, . . . , |wn| ≤ |zn| } is in the domain too. Thus the preceding discussion can be
rephrased as saying that every convergence domain is a complete Reinhardt domain, and
every holomorphic function defined in a complete Reinhardt domain can be represented
there by a convergent power series.

More is true, however. If both
∑

α |cαzα| and
∑

α |cαwα| converge, then Hölder’s
inequality implies that

∑
α |cα||zα|t|wα|1−t converges when 0 ≤ t ≤ 1. This means

that a convergence domain is logarithmically convex. Since a convergence domain is
complete and multi-circular, the domain is determined by the points with positive real
coordinates; replacing the coordinates of each such point by their logarithms produces
a convex domain in Rn.

2.2 Characterization of domains of convergence

The following theorem2 gives a geometric characterization of domains of convergence of
power series.

Theorem 1. A complete Reinhardt domain in Cn is the domain of convergence of some
power series if and only if the domain is logarithmically convex.

Proof. The preceding discussion shows that a convergence domain is necessarily log-
arithmically convex. What remains to prove is that if D is a logarithmically convex
complete Reinhardt domain, then there exists some power series

∑
α cαzα whose domain

of convergence is D. Let us assume at first that the domain D is bounded, for the idea
of the construction is easier to see in that case.

Let ‖zα‖D denote sup{ |zα| : z ∈ D }; this expression is finite when D is bounded.
The claim is that

∑
α zα/‖zα‖D is the desired power series whose domain of convergence

is equal to D. What needs to be checked is that this series converges absolutely at each
point of D, and the series fails to converge absolutely in a neighborhood of any point
outside the closure of D.

If w is a particular point in the interior of D, then w is in the interior of some open
polydisc of polyradius r contained in D. Let λ denote max1≤j≤n |wj|/rj. Then λ < 1,
and |wα|/‖zα‖D ≤ λ|α|. Therefore the series

∑
α wα/‖zα‖D converges absolutely by

comparison with the convergent dominating series
∑

α λ|α|. Thus the first half of the
claim is valid.

To check the second half of the claim, suppose (seeking a contradiction) that the
convergence domain of the series

∑
α zα/‖zα‖D contains a certain point w that lies

outside the closure of D. Since convergence domains are (by definition) open sets, there
is no loss of generality in assuming that every coordinate of the point w is nonzero.

2Fritz Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, ins-
besondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen
fortschreiten, Mathematische Annalen 62 (1906), no. 1, 1–88. (Hartogs considered domains in C2.)
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2 Power series

Moreover, the convergence domain is multi-circular, so there is no loss of generality in
assuming that every coordinate of w is a positive real number.

The hypothesis that D is logarithmically convex means that the set

log D := { (u1, . . . , un) ∈ R
n : (eu1 , . . . , eun) ∈ D }

is a convex set in Rn. The point (log w1, . . . , log wn) can be separated from this convex
set by a hyperplane. Equivalently, there is a linear function h : Rn → R whose value
at the point (log w1, . . . , log wn) exceeds the supremum of h over the convex set log D.
Suppose that h(u) = β1u1 + · · · + βnun, where the βj are certain real numbers.

Since D contains a neighborhood of the origin, there is a real constant m (possibly
negative) such that the convex set log D contains all points u for which max1≤j≤n uj ≤
m. Therefore none of the numbers βj can be negative, for otherwise the function h
would take arbitrarily large positive values on log D. Moreover, since D is bounded,
there is a real constant M such that log D is contained in the set of all points u such
that max1≤j≤n uj ≤ M . Consequently, if each number βj is increased by some small
positive amount ǫj , then the supremum of h over log D increases by no more than
nM max1≤j≤n ǫj . Thus, the coefficients of h can be perturbed slightly, and h will remain
a separating function. Accordingly, there is no loss of generality in assuming that each βj

is a positive rational number. Multiplying by a common denominator shows that the
coefficients βj can be taken to be positive integers.

Exponentiating to get back to the space Cn produces a certain multi-index β such that
|wβ| > ‖zβ‖D. It follows that |wkβ| > ‖zkβ‖D for every positive integer k. Consequently,
the series

∑
α wα/‖zα‖D diverges, for there are infinitely many terms of modulus larger

than 1. This conclusion contradicts the supposition that the series converges in a neigh-
borhood of a point w outside the closure of D, so D must be the convergence domain
of the series after all.

To complete the proof, one has to handle the case of unbounded domains. When D is
unbounded, let Dr denote the intersection of D with the ball of radius r centered at the
origin. Then Dr is a bounded, complete, logarithmically convex Reinhardt domain, so
the preceding analysis applies to Dr. It will not work, however, to splice together power
series of the type just constructed for an increasing sequence of values of r, for none of
these series will converge at every point of the unbounded domain D.

One way to finish the argument (and to advertise coming attractions) is to apply a
famous theorem of H. Behnke and K. Stein (usually called the Behnke-Stein theorem),
according to which an increasing union of domains of holomorphy is again a domain
of holomorphy.3 The next section will show that a convergence domain for a power
series supports some (other) power series that cannot be analytically continued across
any boundary point whatsoever. Hence each Dr is a domain of holomorphy, and the
Behnke-Stein theorem implies that D is a domain of holomorphy. Thus D supports some
holomorphic function that cannot be analytically continued across any boundary point
of D. Since D is a complete Reinhardt domain, this holomorphic function is represented

3H. Behnke and K. Stein, Konvergente Folgen von Regularitätsbereichen und die Meromorphiekon-
vexität, Mathematische Annalen 116 (1938) 204–216.
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2 Power series

by a power series that converges in all of D, and evidently D is the convergence domain
of this power series.

The argument in the preceding paragraph is unsatisfying because, besides being
anachronistic and not self-contained, it provides no concrete construction of the required
power series. Here is an alternate argument that is nearly concrete.

Consider the countable set of points outside the closure of D that have positive rational
coordinates. Make a list {w(j)}∞j=1 of these points in which each point appears infinitely
often. Since the domain Dj is bounded, the first part of the proof provides a multi-
index β(j) of positive integers such that w(j)β(j) > ‖zβ(j)‖Dj

. Multiplying this multi-
index by a positive integer gives another multi-index with the same property, so it may
be assumed that |β(j + 1)| > |β(j)| for every j. The claim is that

∞∑

j=1

zβ(j)

‖zβ(j)‖Dj

is a power series whose domain of convergence is D.
First of all, the indicated series is a power series, since no two of the multi-indices

β(j) are equal (so there are no common terms to combine). If z is an interior point of D,
then z is inside the bounded domain Dk for sufficiently large k. Therefore the tail of the
series is dominated by

∑
α |zα|/‖zα‖Dk

, and the latter series converges inside Dk by the
argument in the first part of the proof. Thus the convergence domain of the indicated
series is at least as large as D.

On the other hand, if the series were to converge absolutely in some neighborhood of
a point outside D, then the series would converge at some point ζ outside the closure
of D having positive rational coordinates. Since there are infinitely many values of j for
which w(j) = ζ , the series

∞∑

j=1

ζβ(j)

‖zβ(j)‖Dj

has (by construction) infinitely many terms larger than 1, and so diverges. Thus the
convergence domain of the constructed series is no larger than D.

Thus every logarithmically convex, complete, multi-circular domain, whether bounded
or unbounded, is the domain of convergence of some power series.

2.3 Natural boundaries

Although the one-dimensional power series
∑∞

k=0 zk has the unit disc as its convergence
domain, the function represented by the series, which is 1/(1 − z), extends holomor-
phically across most of the boundary. On the other hand, there exist power series that
converge in the unit disc and have the unit circle as “natural boundary.” (One example
is the gap series

∑
k z2k

.) The following theorem says that also in higher dimensions,
every convergence domain (that is, every logarithmically convex, complete Reinhardt
domain) is the natural domain of existence of some holomorphic function.

7



2 Power series

Theorem 2. The domain of convergence of a power series is a domain of holomorphy.
More precisely, for every domain of convergence there exists some power series that
converges in the domain and that is singular at every boundary point.

Recall that the word “singular” does not necessarily mean that the function blows up.
To say that a power series is singular at a boundary point of its domain of convergence
means that the series does not admit a direct analytic continuation to a neighborhood
of the point. A function whose modulus tends to infinity is singular, but so is a function
whose modulus tends to zero exponentially fast.

Proof of Theorem 2. Let D be the domain of convergence (assumed nonvoid) of the
power series

∑
α cαzα. Since the two series

∑
α cαzα and

∑
α |cα|zα have the same region

of absolute convergence, there is no loss of generality in assuming from the outset that
the coefficients cα are non-negative real numbers.

The topology of uniform convergence on compact sets is metrizable, so the space of
holomorphic functions on D is a complete metric space. Hence the Baire category theo-
rem is available. The goal is to prove that the holomorphic functions on D that extend
holomorphically across some boundary point form a set of first category in this metric
space. That will imply the existence of power series that are singular at every boundary
point of D; indeed, most power series that converge in D will have this property.

A first step toward the goal is a multi-dimensional version of an observation that dates
back to the end of the nineteenth century.

Lemma 1 (Multi-dimensional Pringsheim lemma). A power series
∑

α cαzα with real
non-negative coefficients cα is singular at every boundary point (r1, . . . , rn) of the domain
of convergence at which all the coordinates rj are positive real numbers.

Proof. Seeking a contradiction, suppose that the holomorphic function f represented by
the series extends holomorphically to a neighborhood of some boundary point r having
positive coordinates. Consider the Taylor series of f about the interior point 1

2
r:

f(z) =
∑

α

1

α!
f (α)(1

2
r)(z − 1

2
r)α.

By the assumption, this series converges when z = r + ǫ1, where 1 = (1, . . . , 1), and ǫ is
a sufficiently small positive number. Differentiating the original series shows that

f (α)(1
2
r) =

∑

β≥α

β!

(β − α)!
cβ(1

2
r)β−α.

Combining these two expressions shows that the series

∑

α

∑

β≥α

(
β

α

)
cβ(1

2
r)β−α(1

2
r + ǫ1)α

8



2 Power series

converges. Since all the quantities involved are non-negative real numbers, the order
of summation can be interchanged without affecting the convergence; the expression
simplifies to the series ∑

β

cβ(r + ǫ1)β.

This series is the original series for f , now seen to be absolutely convergent in a neigh-
borhood of the point r. Hence r could not have been a boundary point of the domain of
convergence. The contradiction shows that f must have been singular at r after all.

In view of the lemma, the power series
∑

α cαzα (now assumed to have non-negative
coefficients) is singular at all the boundary points of the domain of convergence having
positive real coordinates. If (r1e

iθ1 , . . . , rne
iθn) is an arbitrary boundary point having all

coordinates non-zero, then the power series
∑

α cαe−i(α1θ1+···+αnθn)zα is singular at this
boundary point. In other words, for every boundary point having non-zero coordinates,
there exists some power series that converges in D but is singular at that boundary
point.

Now choose a countable dense subset {pj} of the boundary of D consisting of points
with non-zero coordinates. The space of holomorphic functions on D∪B(pj , 1/k) embeds
continuously into the space of holomorphic functions on D. The image of the embedding
is not the whole space, for the preceding discussion produced a power series that does
not extend into B(pj, 1/k). Consequently, by the first theorem of Chapter 3 of Stefan
Banach’s famous book Théorie des opérations linéaires, the image of the embedding must
be of first category (the cited theorem says that if the image were of second category,
then it would be the whole space, which it is not). Thus the set of power series on D
that extend some distance across some boundary point is a countable union of sets of
first category, hence itself a set of first category. Thus most power series that converge
in D have the boundary of D as natural boundary.

2.4 Summary

The preceding discussion shows that for complete Reinhardt domains, the following
properties are all equivalent.

• The domain is logarithmically convex.

• The domain is the domain of convergence of some power series.

• The domain is a domain of holomorphy.

In other words, the problem of characterizing domains of holomorphy is solved for the
special case of complete Reinhardt domains.

9



3 Convexity

From one point of view, convexity is an unnatural property in complex analysis. The
Riemann mapping theorem shows that already in dimension 1, convexity is not pre-
served by biholomorphic mappings. The unit disc is conformally equivalent to any other
bounded simply connected domain, convex or not.

On the other hand, section 2.2 revealed that a special kind of convexity—logarithmic
convexity—appears naturally in studying convergence domains of power series. Studying
various analogues of convexity has been a fruitful approach to solving some fundamental
problems in multi-dimensional complex analysis.

3.1 Real convexity

Ordinary geometric convexity can be described either through an internal geometric
property—the line segment joining two points of the set stays within the set—or through
an external property—every point outside the set can be separated from the set by a
hyperplane. The latter property can be rephrased in analytic terms by saying that every
point outside the set can be separated from the set by a linear function; that is, there is
a linear function that is larger at the specified exterior point than anywhere on the set.

For an arbitrary set, not necessarily convex, its convex hull is the smallest convex set
containing it, that is, the intersection of all convex sets containing it.

Observe that an open set G is convex if and only if the convex hull of every compact
subset K is again a compact subset of G. Indeed, if K is a subset of G, then the convex
hull of K is a subset of the convex hull of G, so if G is already convex, then the convex
hull of K is a subset of G; moreover, the convex hull of a compact set evidently is
compact. Conversely, if G is not convex, then there are two points of G such that the
line segment joining them goes outside of G; take K to be the union of the two points.

3.2 Convexity with respect to a class of functions

The analytic description of convexity has a natural generalization. Suppose that F is
a class of upper semi-continuous real-valued functions on an open set G in Cn (which
might be Cn itself). [Recall that a real-valued function f is upper semi-continuous if
f−1(−∞, a) is an open set for every real number a; an upper semi-continuous function
attains a maximum on a compact set.] A compact subset K of G is called convex with
respect to F if for every point p of G \ K there exists an element f of F for which
f(p) > maxz∈K f(z); in other words, every point outside K can be separated from K by

10



3 Convexity

a function in F . If F is a class of functions that are complex-valued but not real-valued
(typically holomorphic functions), then it is natural to consider convexity with respect to
the class of absolute values of the functions in F ; one typically says simply “F -convex”
for short when the meaning is really “{ |f | : f ∈ F }-convex”.

The F -convex hull of a compact set K, denoted by K̂F (or simply K̂ if F is understood)
is the smallest F -convex set containing K. One says that an open set Ω is F -convex if
for every compact subset K, the F -convex hull K̂F is again a compact subset of Ω.

Example 1. Let G be Rn, and let F be the set of all continuous functions. Then every
compact set K is F -convex because, by Urysohn’s lemma, every point not in K can be
separated from K by a continuous function.

Example 2. Let G be Cn, and let F be the set of coordinate functions, {z1, . . . , zn}. The
F -convex hull of a single point w is the set of all points z for which |zj| ≤ |wj| for all j,
that is, the polydisc determined by the point w. (If some coordinate of w is equal to 0,
then the polydisc is degenerate.) More generally, the F -convex hull of a compact set K
is the set of points z for which |zj | ≤ max{ |ζj| : ζ ∈ K } for every j. Consequently, the
F -convex open sets are precisely the open polydiscs.

A useful observation is that increasing the class of functions F makes it easier to
separate points, so the collection of F -convex sets becomes larger. In other words, if
F1 ⊂ F2, then every F1-convex set is also F2-convex.

Exercise 5. In R
n, convexity with respect to the class of linear functions a1x1+· · ·+anxn

is the same as ordinary geometric convexity. It is the same thing to consider convexity
with respect to the class of affine linear functions a0 + a1x1 + · · · + anxn.

1. Suppose F is the set { |a1x1 + · · · + anxn| } of absolute values of linear functions.
Describe the F -convex hull of a compact set.

2. Suppose F is the set { |a0 + a1x1 + · · ·+ anxn| } of absolute values of affine linear
functions. Describe the F -convex hull of a compact set.

Exercise 6. Repeat the preceding exercise in the setting of Cn and functions with complex
coefficients:

1. Suppose F is the set { |a1z1 + · · · + anzn| } of absolute values of complex linear
functions. Describe the F -convex hull of a compact set.

2. Suppose F is the set { |a0 +a1z1 + · · ·+anzn| } of absolute values of affine complex
linear functions. Describe the F -convex hull of a compact set.

Observe that a point and a compact set can be separated by |f | if and only they
can be separated by |f |2 or more generally by |f |k. Hence there is no loss of generality
in assuming that a class F of holomorphic functions is closed under forming positive
integral powers. Allowing arbitrary products, however, changes the situation, as the
next example demonstrates.

11



3 Convexity

Example 3. Let G be all of Cn, and let F be the set of monomials zα. As in the preceding
example, the F -convex hull of a point is the polydisc determined by the point. Hence
the F -convex hull of an open set must be a complete Reinhardt domain. Moreover, the
F convex hull of a two-point set {w, ζ} evidently contains all points z for which there
exists a number t between 0 and 1 such that |zj | ≤ |wj|t|ζj|1−t for all j. Therefore an
F -convex open set must be a logarithmically, convex complete Reinhardt domain.

Exercise 7. Show that conversely, a logarithmically convex, complete Reinhardt domain
is convex with respect to the class F consisting of the monomials zα.
Hint : see the proof of Theorem 1.

3.2.1 Polynomial convexity

Again let G be all of Cn, and let F be the set of (holomorphic) polynomials. Then
F -convexity is called polynomial convexity. (When the setting is Cn, the word “poly-
nomial” usually means “holomorphic polynomial”, that is, a polynomial in the complex
coordinates z1, . . . , zn rather than a polynomial in the underlying real coordinates.)

A first observation is that the polynomial hull of a compact set is a subset of the
ordinary convex hull. This fact follows from the solution to Exercise 6. Alternatively,
one can argue that if a point is separated from a compact set by a real linear function
Re ℓ(z), then it is separated by eRe ℓ(z), and hence by |eℓ(z)|; now the entire function eℓ(z)

can be approximated uniformly on compact sets by polynomials.
When n = 1, polynomial convexity is characterized by a topological property. Recall

Runge’s approximation theorem, which says that if K is a compact subset of C (not
necessarily connected), and if K has no holes (that is, C \ K is connected), then every
function that is holomorphic in a neighborhood of K can be approximated uniformly
on K by (holomorphic) polynomials.1 Now if K has no holes, and p is a point outside K,
then Runge’s theorem implies that the function equal to 0 in neighborhood of K and
equal to 1 in a neighborhood of p can be arbitrarily well approximated on K ∪ {p}
by polynomials; hence p is not in the polynomial hull of K. On the other hand, if
K has a hole, then the maximum principle implies that points inside the hole are in the
polynomial hull of K. In other words, a compact set K in C is polynomially convex if
and only if K has no holes, that is, C \K is connected. A connected open subset of C is
polynomially convex if and only if it is simply connected, that is, its complement with
respect to the extended complex numbers is connected.

The story is much more complicated when n > 1, for then polynomial convexity is
no longer determined by a topological condition. For instance, whether or not a circle
(of real dimension 1) is polynomially convex depends on how the curve is situated with
respect to the complex structure of Cn.

Example 4. (a) In C2, the circle { (cos θ + i sin θ, 0) : 0 ≤ θ ≤ 2π } is not polynomially
convex. Indeed, the (one-dimensional) maximum principle implies that the polyno-
mial hull of this curve is the disc { (z1, 0) : |z1| ≤ 1 }.

1There is a deeper theorem due to S. N. Mergelyan: it suffices if the function to be approximated is
holomorphic at the interior points of K and continuous on K.
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(b) In C2, the circle { (cos θ, sin θ) : 0 ≤ θ ≤ 2π } is polynomially convex. Indeed, since
the polynomial hull is a subset of the ordinary convex hull, one need only show that
points inside the disc bounded by the circle can be separated from the circle by
(holomorphic) polynomials. The polynomial 1 − z2

1 − z2
2 is identically equal to 0 on

the circle and takes positive real values at points inside the circle, so this polynomial
exhibits the required separation.

The preceding idea can easily be generalized to produce a wider class of examples of
polynomially convex sets.

Example 5. If K is a compact subset of the real subspace of Cn (that is, K ⊂ Rn ⊂ Cn),
then K is polynomially convex.

To see why, first notice that convexity with respect to (holomorphic) polynomials is
the same property as convexity with respect to entire functions, since an entire function
can be approximated uniformly on a compact set by polynomials (for instance, by the
partial sums of the Maclaurin series). Therefore it suffices to write down an entire
function whose modulus separates K from a specified point q outside of K.

A function that does the trick is exp
∑n

j=1 −(zj − Re qj)
2. For let M(z) denote the

modulus of this function: namely, exp
∑n

j=1 [(Im zj)
2 − (Re zj − Re qj)

2]. If q /∈ Rn, then

M(q) = exp
∑n

j=1(Im qj)
2 > 1, and maxz∈K M(z) = maxz∈K exp

∑n
j=1 −(zj − Re qj)

2 ≤
1. On the other hand, if q ∈ Rn but q /∈ K, then the expression

∑n
j=1(zj − Re qj)

2 has
a positive lower bound on the compact set K, so maxz∈K M(z) < 1, while M(q) = 1.
The required separation holds in both cases. (Actually, it is enough to check the second
case, for the polynomial hull of K is a subset of the convex hull of K and hence a subset
of Rn.)

Exercise 8. Show that every compact subset of a totally real subspace of Cn is polyno-
mially convex. (A subspace is called totally real if it contains no complex line. In other
words, a subspace is totally real if, whenever z is a nonzero point in the subspace, the
point iz is not in the subspace.)

Having some polynomially convex sets in hand, one can generate more by the following
example.

Example 6. If K is a polynomially convex subset of Cn, and p is a polynomial, then the
graph { (z, p(z)) ∈ Cn+1 : z ∈ K } is a polynomially convex subset of Cn+1.

For suppose α ∈ Cn and β ∈ C, and (α, β) is not in the graph of p over K; to separate
the point (α, β) from the graph by a polynomial, consider two cases. If α /∈ K, then
there is a polynomial of n variables that separates α from K in Cn; the same polynomial,
viewed as a polynomial on Cn+1 that is independent of zn+1, separates the point (α, β)
from the graph of p. Suppose, on the other hand, that α ∈ K and β 6= p(α). Then the
polynomial zn+1 − p(z) is identically equal to 0 on the graph and is not equal to 0 at
(α, β), so this polynomial separates (α, β) from the graph.

Exercise 9. If f is a function that is continuous on the closed unit disc in C and holo-
morphic on the interior of the disc, then the graph of f in C2 is polynomially convex.

13



3 Convexity

More generally, a smooth analytic disc (the image in Cn of a holomorphic embedding
of the closed unit disc whose derivative is never zero) is always polynomially convex.2

Biholomorphic images of polydiscs, however, can fail to be polynomially convex.3

The basic examples of polynomially convex sets with interior are the polynomial poly-
hedra. A compact set K in Cn is called a polynomial polyhedron if there are finitely
many polynomials such that K = { z ∈ Cn : |p1(z)| ≤ 1, . . . , |pk(z)| ≤ 1 } (the model
case being the polydisc { z ∈ C

n : |z1| ≤ 1, . . . , |zn| ≤ 1 }). Such a set evidently is
polynomially convex, since a point in the complement is separated from K by at least
one of the defining polynomials. Notice that the number k of polynomials can be much
larger than the dimension n. (If K is compact and non-empty, then the number k cannot
be less than n, but proving this property requires some additional tools.4)

A bounded open set G is called a polynomial polyhedron if there are finitely many
polynomials such that G = { z ∈ Cn : |p1(z)| < 1, . . . , |pk(z)| < 1 }. A standard way
to force G to be bounded is to include in the set of defining polynomials the functions
zj/R for some large R and for each j from 1 to n. An open polynomial polyhedron G
is evidently polynomially convex, since on a compact subset of G, the functions |pj| are
all bounded above by some number less than 1.

The following theorem says that any polynomially convex set can be approximated
by polynomial polyhedra.

Theorem 3. (a) If K is a compact polynomially convex set, and U is an open neigh-
borhood of K, then there is an open polynomial polyhedron P such that K ⊂ P ⊂ U .

(b) If G is a polynomially convex open set, then G can be written as the union of an
increasing sequence of open polynomial polyhedra.

Proof. (a) Since the set K is bounded, it is contained in the interior of some closed
polydisc D. For each point w in D \ U , there is a polynomial p that separates w
from K. Multiplying p by a suitable constant, one can arrange that max{ |p(z)| :
z ∈ K } < 1 < |p(w)|. Hence the set { z : |p(z)| < 1 } contains K and is disjoint
from a neighborhood of w. Since the set D \ U is compact, there are finitely many
polynomials p1, . . . , pk such that the polyhedron

⋂k
j=1{ z : |pj(z)| < 1 } contains K

and does not intersect D \ U . Intersecting this polyhedron with D gives a new
polyhedron, and this new polyhedron contains K and is contained in U .

(b) Exhaust G by an increasing sequence of compact sets. The polynomial hulls of
these sets form another increasing sequence of compact subsets of G (since G is

2John Wermer, An example concerning polynomial convexity, Mathematische Annalen 139 (1959)
147–150.

3For an example in C3, see John Wermer, Addendum to “An example concerning polynomial convex-
ity”, Mathematische Annalen 140 (1960) 322–323. For an example in C

2, see John Wermer, On a
domain equivalent to the bidisc, Mathematische Annalen 248 (1980), no. 3, 193–194.

4If w is a point of K, then the k sets {z ∈ Cn : pj(z)−pj(w) = 0 } are analytic varieties of codimension 1
that intersect in an analytic variety of dimension at least n−k that is contained in K. If k < n, then
this analytic variety has positive dimension, but there are no compact analytic varieties of positive
dimension.

14



3 Convexity

polynomially convex). After possibly omitting some of the sets and renumbering,
one obtains a sequence {Kj}∞j=1 of polynomially convex compact subsets of G such
that each Kj is contained in the interior of Kj+1. The first part of the theorem then
provides a sequence of open polynomial polyhedra Pj such that Kj ⊂ Pj ⊂ Kj+1.

Although the theory of polynomial convexity is sufficiently mature that there exists
a good reference book,5 it remains fiendishly difficult to determine the polynomial hull
of even quite simple sets. Here is one tractable example: If K1 and K2 are disjoint,
compact, convex sets in Cn, then the union K1 ∪ K2 is polynomially convex.

Proof. The convex sets K1 and K2 can be separated by a real hyperplane, or equivalently
by the real part of a complex linear function ℓ. The geometric picture is that ℓ projects C

n

onto a complex line (a one-dimensional complex subspace). Then ℓ(K1) and ℓ(K2) can
be viewed as disjoint compact convex sets in C.

Suppose now that w is a point outside of K1 ∪ K2. If ℓ(w) /∈ ℓ(K1) ∪ ℓ(K2), then
Runge’s theorem provides a polynomial p of one variable such that |p(ℓ(w))| > 1, and
|p(z)| < 1 when z ∈ ℓ(K1) ∪ ℓ(K2). In other words, the polynomial p ◦ ℓ separates w
from K1 ∪ K2 in Cn.

If, on the other hand, ℓ(w) ∈ ℓ(K1) ∪ ℓ(K2), then one may as well assume that
ℓ(w) ∈ ℓ(K1). Since w /∈ K1, however, and K1 is polynomially convex, there is a
polynomial p on Cn such that |p(w)| > 1 and |p(z)| < 1/3 when z ∈ K1. Let M be an
upper bound for |p| on K2. Applying Runge’s theorem in C gives a polynomial q of one
variable such that |q| < 1/(3M) on ℓ(K2) and 2/3 ≤ |q| ≤ 1 on ℓ(K1). The product
polynomial p× (q ◦ ℓ) separates w from K1 ∪K2: for on K1, the first factor has modulus
less than 1/3, and the second factor has modulus no greater than 1; on K2, the first
factor has modulus at most M , and the second factor has modulus less than 1/(3M);
and at w, the modulus of the first factor exceeds 1, and the modulus of the second factor
is at least 2/3.

The preceding proposition is a special case of a separation lemma of Eva Kallin, who
showed that the union of three closed, pairwise disjoint balls in Cn is always polynomially
convex.6 The question of the polynomial convexity of the union of four pairwise disjoint
closed balls is still open after more than four decades. The problem is subtle, for Kallin
also gave an example of three closed pairwise disjoint polydiscs in C3 whose union is not
polynomially convex.

Runge’s theorem in dimension 1 indicates that polynomial convexity is intimately
connected with the approximation of holomorphic functions by polynomials. There is
an analogue of Runge’s theorem in higher dimension, known as the Oka-Weil theorem,
to be revisited later. Here is the statement.

5Edgar Lee Stout, Polynomial Convexity, Birkhäuser Boston, 2007.
6Eva Kallin, Polynomial convexity: The three spheres problem, in Proceedings of the Conference on

Complex Analysis (Minneapolis, 1964), pp. 301–304, Springer, 1965.
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Theorem 4 (Oka-Weil). If K is a compact, polynomially convex set in Cn, then every
function holomorphic in a neighborhood of K can be approximated uniformly on K by
(holomorphic) polynomials.

Exercise 10. Give an example of a compact set K in C2 such that every function holo-
morphic in a neighborhood of K can be approximated uniformly on K by polynomials,
yet K is not polynomially convex.

3.2.2 Linear and rational convexity

The preceding examples involved functions that are globally defined on the whole space
independently of the region in question. In many interesting cases, however, the class of
functions varies with the region.

Suppose that G is an open set in Cn, and let F be the class of those linear fractional
functions

a0 + a1z1 + · · ·+ anzn

b0 + b1z1 + · · · + bnzn

that happen to be holomorphic on G (in other words, the denominator has no zeroes
in G). The claim is that G is F -convex if and only if through each boundary point of G
there passes a complex hyperplane that does not intersect G. (A simple example of such
a set G is C

2 \ { (z1, z2) ∈ C
n : z2 = 0 }, where the boundary points of G form a complex

line.)
Suppose first that G is F -convex, and let w be a point in the boundary of G. If K is a

compact subset of G, then K̂F is again a compact subset of G, so to every point w′ in G
sufficiently close to w there corresponds a linear fractional function f in F such that
f(w′) = 1 > max{ |f(z)| : z ∈ K }. Let ℓ denote the difference between the numerator
of f and the denominator of f ; then ℓ(z) = 0 at a point z in G if and only if f(z) = 1.
Hence the zero set of ℓ, which is a complex hyperplane, passes through w′ and does not
intersect K. Multiply ℓ by a suitable constant to ensure that the vector consisting of
the coefficients of ℓ has length 1.

Now exhaust G by an increasing sequence of compact sets Kj . The preceding con-
struction produces a sequence of points wj in G converging to w and a sequence of
normalized first-degree polynomials ℓj such that ℓj(wj) = 0, and the zero set of ℓj does
not intersect Kj . The set of vectors of length 1 is compact, so it is possible to pass to
the limit of a suitable subsequence to obtain a complex hyperplane that passes through
the boundary point w and does not intersect the open set G.

Conversely, a supporting complex hyperplane at a boundary point w is the zero set
of a certain first-degree polynomial ℓ, and 1/ℓ is then a linear fractional function that is
holomorphic on G and blows up at w. Therefore the F -convex hull of a compact set K
in G stays away from w. Since w is arbitrary, the hull K̂F is a compact subset of G.
Since K is arbitrary, the domain G is F -convex by definition.

A domain that is convex with respect to the linear fractional functions that are holo-
morphic on it is called weakly linearly convex. (A domain is called linearly convex if the
complement can be written as a union of complex hyperplanes. The terminology is not
completely standardized, however, so one has to check each author’s definitions.)
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Next consider general rational functions (quotients of polynomials). A compact set K
is called rationally convex if every point w outside K can be separated from K by a
rational function that is holomorphic on K∪{w}, that is, if there is a rational function f
such that |f(w)| > max{ |f(z)| : z ∈ K }. In this definition, it does not much matter
whether or not f is holomorphic at w, for if f(w) is undefined, then one can slightly
perturb the coefficients of f to make |f(w)| be a large finite number without changing
the values of f on K very much.

Example 7. Every compact set K in C is rationally convex. Indeed, if w is a point
outside K, then the rational function 1/(z − w) blows up at w, so w is not in the
rationally convex hull of K. [For a suitably small positive ǫ, the rational function
1/(z − w − ǫ) has larger modulus at w than it does anywhere on K.]

Exercise 11. The domain { (z1, z2) ∈ C2 : 1 < |z1| < 2 and 1 < |z2| < 2 } is rationally
convex.

There is a certain awkwardness in talking about multi-variable rational functions,
because the singularities can be either poles (where the modulus blows up) or points
of indeterminacy (like the origin for the function z1/z2). Therefore it is convenient to
rephrase the notion of rational convexity in a way that uses only polynomials.

The notion of polynomial convexity involves separation by the modulus of a polyno-
mial; it is natural to introduce the modulus in order to write inequalities. One could,
however, consider the weaker separation property that a point w is separated from a
compact set K if there is a polynomial p such that the image of w under p is not con-
tained in the image of K under p. The claim is that this weaker separation property is
identical to the notion of rational convexity.

Indeed, if p(w) /∈ p(K), then for every sufficiently small positive ǫ, the function
1/(p(z) − p(w) − ǫ) is a rational function of z that is holomorphic in a neighborhood
of K and has larger modulus at w than it has anywhere on K. Conversely, if f is a
rational function, holomorphic on K ∪ {w}, whose modulus separates w from K, then
the function 1/(f(z) − f(w)) is a rational function of z that is holomorphic on K and
undefined at w; if this function is rewritten as a quotient of polynomials, then the
denominator is a polynomial that is equal to 0 at w and nonzero on K.

Thus, a point w is in the rationally convex hull of a compact set K if and only if every
polynomial that is equal to zero at w also has a zero on K.

Example 8 (the Hartogs triangle). The open set { (z1, z2) ∈ C2 : |z1| < |z2| < 1 } is
convex with respect to the linear fractional functions, because through each boundary
point passes a complex line that does not intersect the domain. Indeed, the line z2 = 0
serves at the origin (0, 0); at any other boundary point where |z1| = |z2|, there is some
value of θ for which the line z1 = eiθz2 serves; and at a point where |z2| = 1, there is
some value of θ for which the line eiθz2 = 1 serves.

In particular, the open Hartogs triangle is a rationally convex domain, since there are
more rational functions than there are linear fractions. On the other hand, the open
Hartogs triangle is not polynomially convex. Indeed, the polynomial hull of the circle
{ (0, 1

2
eiθ) : 0 ≤ θ < 2π } is the disc bounded by this circle, but the center of the disc is

not in the domain.
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The situation changes if one considers the closed Hartogs triangle, the set where
|z1| ≤ |z2| ≤ 1. The rationally convex hull of this compact set is the closed bidisc.
Indeed, suppose p is a polynomial that has no zero on the closed Hartogs triangle; by
continuity, p has no zero in an open neighborhood of the closed triangle. For each fixed z1,
the function 1/p has a Laurent series expansion in z2 in the annulus where |z1| < |z2| < 1;
when z1 is close to 0, the series becomes a Maclaurin series that converges in a full disc
where |z2| < 1. The Laurent series coefficients are represented by integrals of the form

1

2πi

∫

C

1/p(z1, w)

wk+1
dw,

so they depend holomorphically on z1. Since the coefficients with negative index vanish
for z1 in a neighborhood of 0, they vanish identically. Hence the Laurent series for 1/p
is a Maclaurin series even when z1 is far away from 0. Consequently, the polynomial p
cannot have any zeroes in the bidisc. By the characterization of rational convexity in
terms of zeroes of polynomials, it follows that the rational hull of the closed Hartogs
triangle contains the whole bidisc; the rational hull cannot contain any other points,
since the rational hull is a subset of the convex hull.

The argument in the preceding paragraph is the same as the argument hinted at on
page 1. The argument shows that a function holomorphic in an open neighborhood of
the closed Hartogs triangle extends holomorphically to the whole bidisc. Thus the closed
Hartogs triangle cannot be approximated from outside by polynomially convex domains
or by rationally convex domains or even by holomorphically convex domains, which are
the next topic to be discussed.

3.2.3 Holomorphic convexity

Suppose that G is a domain in Cn, and F is the class of holomorphic functions on G.
Then F -convexity is called holomorphic convexity (with respect to G).

Example 9. When G = C
n, holomorphic convexity is just polynomial convexity, since

every entire function can be approximated uniformly on compact sets by polynomials
(namely, the partial sums of the Maclaurin series).

If G1 ⊂ G2, and K is a compact subset of G1, then the holomorphically convex hull
of K with respect to G1 evidently is a subset of the holomorphically convex hull of K
with respect to G2 (because there are more holomorphic functions on G1 than there
are on the larger domain G2). In particular, a polynomially convex compact set is
holomorphically convex with respect to any domain G that contains it; so is a convex
set.

Example 10. Let K be the unit circle { z ∈ C : |z| = 1 } in the complex plane.

(a) Suppose that G is the whole plane, in which case F is the class of entire functions.
Then the F -hull of K is the closed unit disc (by the maximum principle).
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(b) Suppose that G is the punctured plane { z ∈ C : z 6= 0 }, and F is the class
of holomorphic functions on G. Then K is already an F -convex set (because the
function 1/z, which is holomorphic on G, separates points inside the circle from
points on the circle).

Thus the notion of holomorphic convexity does depend both on G and on K.

The next theorem solves the fundamental problem of characterizing the holomorphi-
cally convex domains in Cn. This problem is interesting only when n > 1, for Example 7
implies that every domain in the complex plane is holomorphically convex. The theory
of holomorphic convexity is due to Henri Cartan and Peter Thullen.7

Theorem 5. The following properties are equivalent for a domain G in Cn.

1. The domain G is holomorphically convex (that is, for every compact set K con-

tained in G, the holomorphically convex hull K̂ is again a compact subset of G).

2. For every sequence of points in G having no accumulation point in G, there exists
a holomorphic function on G that is unbounded on the sequence of points.

3. For every compact set K contained in G, the distance from K to the boundary
of G is equal to the distance from K̂ to the boundary of G.

4. The domain G is a domain of holomorphy.

The proof will include a precise definition of what property (4) means.

Proof. The initial steps in the proof will show that (1) =⇒ (2) =⇒ (3) =⇒ (1).
If the domain G is holomorphically convex, then G can be exhausted by an increasing

sequence {Kj} of compact, holomorphically convex sets. (Exhaust G by an arbitrary
sequence of compact sets, and then replace each set by its holomorphically convex hull.)
Now suppose given a sequence {pj} of points in G having no accumulation point in G.
One can recursively construct a sequence of holomorphic functions fk on G together
with an increasing sequence of positive integers jk such that pjk

∈ Kjk+1
\ Kjk

, and

|fk(z)| < 2−k for z in Kjk
, and |fk(pjk

)| > k +
∑k−1

m=1 |fm(pjk
)|. The functions fk exist

because Kjk
is holomorphically convex, and pjk

/∈ Kjk
. The series

∑∞
k=1 fk then converges

uniformly on compact subsets of G to a holomorphic function f such that |f(pjk
)| > k−1.

Thus (1) =⇒ (2).
Next suppose that (2) holds, let K be a compact subset of G, and let w and t be points

of K̂ and of bG at minimal distance from each other. Apply property (2) to produce
a holomorphic function f on G that is unbounded on a sequence of points converging
to t and lying in the set {w + λ(t − w)/|t − w| : λ ∈ C and |λ| < dist(K̂, bG) }
(this set is a one-dimensional complex disc centered at w and lying in the complex line
determined by w and t). The radius of convergence of the Maclaurin series expansion

7Henri Cartan and Peter Thullen, Zur Theorie der Singularitäten der Funktionen mehrer komplexen
Veränderlichen. Regularitäts- und Konvergenzbereiche, Mathematische Annalen 106 (1932) 617–
647.
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of the function λ 7→ f(w + λ(t − w)/|t − w|) is then equal to the distance from K̂
to bG. The reciprocal of the radius of convergence is lim supm→∞ |am|1/m, where the
Maclaurin series coefficients am, being given by derivatives of f , are the values at w of
certain holomorphic functions on G. By the definition of the holomorphically convex
hull, the reciprocal of the radius of convergence of the Maclaurin series for the function
λ 7→ f(w + λ(t − w)/|t − w|) is no greater than the maximum as z varies over K
of the reciprocal of the radius of convergence of the series representing the function
λ 7→ f(z + λ(t−w)/|t−w|). Hence the radius of convergence is at least as large as the
minimum over K of the radius of convergence of the series for f(z + λ(t − w)/|t − w|),
that is, at least as large as the minimum distance from K to bG along the direction of
the vector t − w. In particular, the distance from K̂ to bG is at least as large as the
distance from K to bG. On the other hand, K ⊆ K̂, so the distance from K̂ to bG is no
less than the distance from K to bG. Thus (2) =⇒ (3).

If (3) holds, then K̂ stays away from bG. On the other hand, since K is bounded, so
is its convex hull, and therefore so is its holomorphically convex hull (which is a subset

of the convex hull). Hence K̂ is a compact subset of G. Thus (3) =⇒ (1).
Addressing property (4) requires an interruption of the proof to define precisely what

a domain of holomorphy is.

According to Cartan and Thullen, a domain is a domain of holomorphy if it supports
a holomorphic function that does not extend holomorphically to any larger domain,8 but
to Cartan and Thullen, a “domain” is a Riemann domain spread over Cn (the higher-
dimensional analogue of a Riemann surface), that is, a complex manifold. The definition
below is (necessarily) slightly convoluted because it formulates the concept of domain of
holomorphy without introducing the machinery of manifolds.

Example 11. One can define a holomorphic branch of the function
√

z on the slit plane
C \ { z : Im z = 0 and Re z ≤ 0 }. This function is discontinuous at all points of the neg-
ative part of the real axis, so the function certainly does not extend to be holomorphic
in a neighborhood of any of these points. The function does, however, continue holo-
morphically across each non-zero boundary point from one side. The natural domain of
definition of

√
z is not the slit plane but rather a two-sheeted Riemann surface.

In general, the boundary of a domain can be quite complicated. For instance, the
boundary need not be locally connected. A holomorphic function f on a domain G is
called completely singular at a boundary point p if for every connected open neighbor-
hood U of p, there does not exist a holomorphic function F on U that agrees with f
on some nonvoid open subset of U ∩ G (equivalently, on some connected component
of U ∩ G). A completely singular function is “holomorphically non-extendable” in the
strongest possible way.

A domain G in Cn is called a domain of holomorphy if there exists a holomorphic
function on G that is completely singular at every boundary point of G. This property

8“Einen Bereich B nennen wir einen Regularitätsbereich (domaine d’holomorphie), falls es eine in B

eindeutige und reguläre Funktion f(z1, . . . , zn) gibt derart, daß jeder B enthaltende Bereich B
′, in

dem f(z1, . . . , zn) eindeutig und regulär ist, notwendig mit B identisch ist.” Cartan and Thullen,
loc. cit., p. 618.
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3 Convexity

appears to be hard to verify in concrete cases. An easier property to check is the
existence at each boundary point p of a holomorphic function on G that is completely
singular at p; a domain satisfying this (apparently less restrictive) property is sometimes
called a weak domain of holomorphy. The next theorem shows that a weak domain of
holomorphy is in fact a domain of holomorphy.

Example 12. Convex domains are weak domains of holomorphy. Indeed, at each bound-
ary point there is an affine complex linear function that is zero at the boundary point
but nonzero inside the domain. The reciprocal of the function is then holomorphic in-
side and singular at the specified boundary point. It is less obvious how to exhibit a
holomorphic function that is singular at every boundary point of a convex domain.

The next theorem subsumes the remaining parts of Theorem 5 and also shows that
weak domains of holomorphy are domains of holomorphy.

Theorem 6. The following properties of a domain G in Cn are equivalent.

1. The domain G is holomorphically convex.

2. For every boundary point p, there exists a holomorphic function on G that is com-
pletely singular at p. (In other words, G is a weak domain of holomorphy.)

3. For every boundary point p, the generic (in the sense of Baire category) holomor-
phic function on G is completely singular at p.

4. There exists a holomorphic function on G that is completely singular at every
boundary point of G. (In other words, G is a domain of holomorphy.)

5. The generic (in the sense of Baire category) holomorphic function on G is com-
pletely singular at every boundary point.

The space of holomorphic functions on a domain G carries a topology induced by
uniform convergence on compact subsets (normal convergence), and this topology is
metrizable. Namely, exhaust G by an increasing sequence of compact subsets Kj,
let dj(f, g) = maxz∈Kj

|f(z) − g(z)|, and define a metric on holomorphic functions by
d(f, g) =

∑
j 2−jdj(f, g)/(1 + dj(f, g)). Since the normal limit of holomorphic functions

is holomorphic, the space of holomorphic functions on G is a complete metric space.
This property was already used on page 8 in the proof of Theorem 2 to bring in the
Baire category theorem. The word “generic” in the statement of Theorem 6 means “the
complement of a set of first Baire category”.

Proof of Theorem 6. Suppose that G is a holomorphically convex domain. To get started
constructing singular functions, let p be a boundary point of G, let U be a connected
open neighborhood of p, and let V be a connected component of the intersection U ∩G.

The first observation is a purely topological one: namely, there exists a point q in
(U ∩ bV ) ∩ bG. Indeed, since V is a proper open subset of U , and U is connected, it
follows that V cannot be relatively closed in U . Hence some point of bV lies in U \ V .
If this point of U ∩ bV were in G, then it would in particular be in U ∩ G and hence in
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some connected component of U ∩ G other than V ; this component would intersect bV
and hence V , which is impossible.

By Theorem 5, there exists a holomorphic function on G that is unbounded on a
sequence of points of V tending to q. Since q ∈ U , this function cannot be extended
holomorphically from V to U .

The next claim is that most holomorphic functions on G cannot be extended holo-
morphically from V to U . The vector space of holomorphic functions on G is not only
a complete metric space but also an F -space or Fréchet space (that is, the vector space
operations are continuous, and the metric is translation-invariant); a standard notation
for this space is O(G). The subspace of O(G) consisting of functions that extend holo-
morphically from V to U can be viewed as a Fréchet space whose metric is the sum of
the metrics from O(G) and O(U); this subspace is embedded continuously into O(G).
As just shown, the image of the embedding is not the whole of O(G), so by a theorem
from functional analysis, the image is of first Baire category.9 Thus a residual set of
functions in O(G) cannot be extended holomorphically from V to U .

To strengthen the conclusion further, choose a countable dense set of points in bG. For
each point, choose a countable neighborhood basis of open balls centered at the point,
say the balls having radius 1/k as k runs through the positive integers. The intersection
of each ball with G has either a finite or a countably infinite number of connected
components. Arrange the collection of components over all balls and all points into
a countable list {Vj}∞j=1. According to what was just shown, the set of holomorphic
functions on G that extend holomorphically from a particular Vj to its corresponding
ball is a set of first category in O(G). Therefore the set of holomorphic functions on G
that extend from any Vj at all is a countable union of sets of first category, hence still
a set of first category. In other words, the complementary set of holomorphic functions
on G that extend from no Vj to the corresponding ball is a residual set.

It seems plausible that every member of this residual set of holomorphic functions must
be completely singular at every boundary point. One can confirm this expectation as
follows. Suppose that some function f in the residual set fails to be completely singular
at a boundary point p. This means that there is a connected neighborhood U of p and
a component V of U ∩ G such that f extends holomorphically from V to U . As shown
earlier in the proof, there is some point q in the intersection (U∩bV )∩bG. Choose one of
the specified countable set of open balls that contains q and is contained in U . This ball
intersects V (since it contains a point of bV ), so the function f extends holomorphically
from an open subset of the ball to the whole ball (a subset of U). By construction,
however, the function f does not admit such an extension. The contradiction shows
that every function f in the indicated residual set of functions is completely singular at
every boundary point of G.

In summary, the preceding argument shows that if property (1) holds, then prop-
erty (5) holds. It is evident that (5) =⇒ (4) =⇒ (2) and (5) =⇒ (3) =⇒ (2).

9The argument is the same as the one on page 9. The theorem from Banach’s book cited there applies,
or one could invoke the version of the open mapping theorem from Walter Rudin’s book Functional
Analysis (section 2.11, page 48 of the second edition): a continuous linear mapping between Fréchet
spaces either is a surjective open map or has image of first category.
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It remains to show that (2) =⇒ (1), in other words, that a weak domain of holomorphy

is holomorphically convex. The strategy is to show that dist(K, bG) = dist(K̂, bG)
for every compact subset K of G by using a similar approach to that in the proof
of Theorem 5. It is enough to show that dist(K̂, bG) ≥ dist(K, bG), for the reverse

inequality follows simply because K ⊆ K̂.
Seeking a contradiction, suppose that dist(K̂, bG) < dist(K, bG). There is then a

point w in K̂ and a point p in bG such that |w − p| < dist(K, bG). It follows that there
is an n-tuple (r1, . . . , rn) of positive radii such that the open polydisc centered at w with
polyradius r equal to (r1, . . . , rn) contains p, while for every point z in K, the closed
polydisc centered at z with polyradius r is contained in G.

Under the hypothesis that G is a weak domain of holomorphy, there is a holomorphic
function f on G that is completely singular at p. The union of the closed polydiscs
centered at points of the compact set K with polyradius r is a compact subset of G, so
the function f is bounded by some constant M on this set. By Cauchy’s estimates for
derivatives (just as in one variable, these inequalities follow from the iterated Cauchy
integral on polydiscs),

|f (α)(z)| ≤ Mα!

rα
for z in K and for every multi-index α.

Since w ∈ K̂, the same inequalities hold with z replaced by w. Consequently, the Taylor
series for f centered at w converges in the interior of the polydisc centered at w with
polyradius r (by comparison with a product of convergent geometric series).

Thus f is not completely singular at p after all. The contradiction shows that the
supposition that dist(K̂, bG) < dist(K, bG) is untenable.

This conclusion proves that (2) implies (1), which completes the chain of implications
required to prove the theorem.

Exercise 12. For each of the following subsets of C2, determine if the subset is a domain
of holomorphy.

(a) The complement of a point.

(b) The complement of the real line { (z1, 0) : Im z1 = 0 }.

(c) The complement of the complex line { (z1, 0) : z1 ∈ C }.

(d) The complement of the totally real 2-plane { (z1, z2) : both Im z1 = 0 and Im z2 = 0 }.

(e) The complement of the half-line { (z1, 0) : Im z1 ≥ 0 }.

(f) The complement of { (z1, 0) : z1 ∈ C } ∪ { (0, z2) : z2 ∈ C } ∪ { (z1, z2) : z1 6= 0 and
z2 6= 0 and arg z1 = arg z2 }. The removed set consists of two complex lines together
with a certain surface. If you are worried about the argument function not being
well defined, then rewrite the condition arg z1 = arg z2 as z1/|z1| = z2/|z2|.
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Exercise 13. (a) Is the union of two domains of holomorphy again a domain of holo-
morphy?

(b) If the intersection of two domains of holomorphy is a nonvoid connected set, is it
again a domain of holomorphy?

(c) If G1 is a domain of holomorphy in C
n1 , and G2 is a domain of holomorphy in C

n2,
is the Cartesian product G1 × G2 a domain of holomorphy in Cn1+n2?

(d) Show that holomorphic convexity is a biholomorphically invariant property: namely,
if f : G1 → G2 is a bijective holomorphic map having a holomorphic inverse, then
G1 is a domain of holomorphy if and only if G2 is a domain of holomorphy.

(e) Suppose G is a domain of holomorphy in Cn, and f : G → Cn is a holomorphic
map (not necessarily either injective or surjective). If the image f(G) is an open set
in Cn, is it a domain of holomorphy?

(f) Suppose G is a domain of holomorphy in Cn, and f : G → Ck is a holomorphic
map (not necessarily either injective or surjective). Show that if D is a domain of
holomorphy in C

k, then (each connected component of) the inverse image f−1(D)
[that is, { z ∈ G : f(z) ∈ D }] is a domain of holomorphy in Cn.

(g) If f1, . . . , fk are holomorphic functions on a holomorphically convex domain, then
each connected component of { z :

∑k
j=1 |fj(z)| < 1 } is a domain of holomorphy.

3.2.4 Pseudoconvexity

Pseudoconvexity means convexity with respect to a certain class of real-valued functions
that Kiyoshi Oka10 called “pseudoconvex functions”. Pierre Lelong11 called these func-
tions “plurisubharmonic functions”, and this is the name by which they are now known.
The discussion had better start with the base case of dimension 1.

Subharmonic functions

A real-valued function u defined on an open subset of the complex plane C and tak-
ing values in [−∞,∞) is called subharmonic if firstly it is upper semi-continuous, and
secondly it satisfies one of the following equivalent properties:

1. for every point a in the domain of u, there is a radius r(a) such that u satisfies
the sub-mean-value property on every disc of radius ρ less than r(a), that is,

u(a) ≤ 1
2π

∫ 2π

0
u(a + ρeiθ) dθ;

2. the function u satisfies the sub-mean-value property on every closed disc contained
in its domain;

10Kiyoshi Oka, Domaines pseudoconvexes, Tôhoku Mathematical Journal 49 (1942) 15–52.
11Pierre Lelong, Définition des fonctions plurisousharmoniques, C. R. Acad. Sci. Paris 215 (1942)

398–400.
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3. for every closed disc D in the domain of the function u and every harmonic func-
tion h on D, if u ≤ h on the boundary of D, then u ≤ h in all of D;

4. for every compact subset K of the domain of definition of u, and for every func-
tion h that is harmonic on K, if u ≤ h on the boundary of K, then u ≤ h on all
of K;

5. if ∆ denotes the Laplace operator d2

dx2 + d2

dy2 , then ∆u ≥ 0 (if u does not have
second derivatives in the classical sense, then ∆u is understood in the sense of
distributions).

That these properties are equivalent is shown in textbooks on the theory of functions
of one complex variable. Some authors exclude the function that is constantly equal
to −∞ from the class of subharmonic functions.

A simple example of a subharmonic function is |f |, where f is holomorphic. Since a
holomorphic function has the mean-value property, its modulus has the sub-mean-value
property because the modulus of an integral does not exceed the integral of the modulus.

Another basic example of a subharmonic function in C is log |z|. This function is
even harmonic when z 6= 0, so it has the mean-value property on small discs centered at
non-zero points; it trivially has the sub-mean-value property at 0, because it takes the
value −∞ at 0. Since the class of harmonic functions is preserved under composition
with a holomorphic function, property 4 implies that the class of subharmonic functions
is preserved too: so log |f | is subharmonic when f is holomorphic.

Here are two useful lemmas about subharmonic functions that can be proved from
first principles.

Lemma 2. If u is subharmonic, then the integral of u on concentric circles is a weakly
increasing function of the radius. In other words,

∫ 2π

0
u(a+r1e

iθ) dθ ≤
∫ 2π

0
u(a+r2e

iθ) dθ
when 0 < r1 < r2.

Lemma 3. A subharmonic function on a connected open set is either locally integrable
or identically equal to −∞.

Proof of Lemma 2. Since u is upper semi-continuous, there is for each positive ε a con-
tinuous function h on the circle of radius r2 such that u < h < u + ε on this circle.
By solving a Dirichlet problem, one may assume that h is harmonic in the disc of ra-
dius r2, or, after slightly dilating the coordinates, in a neighborhood of the closed disc.
Then u < h on the circle of radius r1, since u is subharmonic, so

∫ 2π

0
u(a + r1e

iθ) dθ <∫ 2π

0
h(a + r1e

iθ) dθ = 2πh(a) =
∫ 2π

0
h(a + r2e

iθ) dθ < 2πε +
∫ 2π

0
u(a + r2e

iθ) dθ. Letting ε
go to 0 gives the required inequality.

Proof of Lemma 3. An upper semi-continuous function is locally bounded above, so
what needs to be proved is that the integral of the subharmonic function u on a disc is
not −∞ unless the function is identically equal to −∞.

If a is a point at which u(a) 6= −∞, then the sub-mean-value property implies that
1
2π

∫ 2π

0
u(a+reiθ) dθ ≥ u(a) when the closed disc centered at a of radius r is contained in
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the domain of u. Averaging in r shows that |B|−1
∫

B
u ≥ u(a) for every ball B centered

at a. Hence u is locally integrable in a neighborhood of every point of B.
On the other hand, if b is a point such that u(b) = −∞, but u is not identically equal

to −∞ in a neighborhood of b, then there is a point a closer to b than to the boundary
of the domain of definition of u such that u(a) 6= −∞. Then by what was just observed,
the function u is integrable in a neighborhood of b.

The preceding two paragraphs show that the set of points such that u is integrable in
a neighborhood of the point is both open and relatively closed. Therefore the function u,
if not identically equal to −∞, is locally integrable in a neighborhood of every point of
its domain.

Exercise 14. (a) The sum of two subharmonic functions is subharmonic.

(b) If u is subharmonic and c is a positive constant, then cu is subharmonic.

(c) If u1 and u2 are subharmonic, then so is the pointwise maximum of u1 and u2.

Some care is needed in handling infinite processes involving subharmonic functions.
Indeed, simple examples show that two things could go wrong in taking the pointwise
supremum of an infinite family of subharmonic functions. The sequence of constant
subharmonic functions fn(z) = n has limit +∞, which is not an allowed value for
upper semi-continuous functions. On the unit disc, the family of subharmonic functions
fn(z) = 1

n
log |z| has pointwise supremum equal to 0 when z 6= 0 and equal to −∞ when

z = 0; this limit function is not upper semi-continuous. The following exercise says that
these difficulties are the only obstructions to subharmonicity of a pointwise supremum.

Exercise 15. If A is any index set (not necessarily countable), uα is subharmonic for
each α in A, and the pointwise supremum supα∈A uα is upper semi-continuous (which
entails being nowhere equal to +∞), then the pointwise supremum is subharmonic.

Taking a pointwise supremum of subharmonic functions is a process used in Perron’s
method for solving the Dirichlet problem.

Although taking the maximum of two subharmonic functions produces another one,
taking the minimum does not. For instance, min(1, |z|) does not have the sub-mean-value
property at the point where z = 1. Nonetheless, monotonically decreasing sequences of
subharmonic functions have subharmonic limits.

Theorem 7. The pointwise limit of a decreasing sequence of subharmonic functions
is subharmonic. Moreover, every subharmonic function on an open set is, on each
compact subset, the limit of a decreasing sequence of infinitely differentiable subharmonic
functions.

Proof. First observe that the limit u of a decreasing sequence {uk}∞k=1 of upper semi-
continuous functions is still upper semi-continuous, because { z : u(z) < a } =

⋃∞
k=1{ z :

uk(z) < a }, and the union of open sets is open. Now if K is a compact subset of the
domain of definition of the functions, and h is a harmonic function on K such that u ≤ h
on the boundary of K, then u < h + ε on the boundary of K for every positive ε. If
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z is a point of bK, then uk(z) < h(z) + ε for all sufficiently large k. Since uk is upper
semi-continuous, if follows that uk(w) ≤ h(w) + 2ε for all w in a neighborhood of z.
Since bK is compact, and the sequence of functions is decreasing, there is some k such
that uk ≤ h + 2ε on all of bK. Since uk is subharmonic, uk ≤ h + 2ε on all of K.
Therefore u ≤ h + 2ε on K, and letting ε go to 0 shows that u ≤ h on K. Hence the
limit function u is subharmonic.

For the second part of the theorem, let u be a subharmonic function on a domain G
in C, and extend u to be identically equal to 0 outside G. Let ϕ be an infinitely differen-
tiable, non-negative function, with integral 1, supported in the unit ball, and depending
only on the radius, and let ϕε(x) denote ε−2ϕ(x/ε). Let uε denote the convolution of u
and ϕε: namely, uε(z) =

∫
C

ϕε(z − w)u(w) dAw =
∫

C
u(z − w)ϕε(w) dAw, where dA de-

notes Lebesgue area measure in the plane. Thus the value of uε at a point is a weighted
average of the values of u in an ε-neighborhood of the point.

The sub-mean-value property of subharmonic functions implies that u(z) ≤ uε(z) at
every point z whose distance from the boundary of G is at least ε. Moreover, Lemma 2
implies that on a compact subset of G, the functions uε decrease when ε decreases,
once ε is smaller than the distance from the compact set to bG. Since u is upper semi-
continuous, the average of u over a sufficiently small disc is arbitrarily little more than
the value of u at the center of the disc; the decreasing limit of uε(z) is therefore equal to
u(z). The first expression for the convolution shows that the functions uε are infinitely
differentiable, for one can differentiate under the integral sign, letting the derivatives act
on ϕε. That uε is subharmonic follows by integrating uε on a circle, interchanging the
order of integration, and invoking the subharmonicity of u.

Here are two interesting examples that apply Theorem 7.

Example 13. Let {ak}∞k=1 be a bounded sequence of distinct points of the plane C, and
suppose u(z) =

∑∞
k=1 2−k log |z − ak|. Then u is a subharmonic function on the whole

plane. Notice that the sequence {ak} might be dense in some compact set; for instance,
the sequence could be the set of points in the unit square having rational coordinates.

To see why u is subharmonic, first suppose that z0 is not one of the points ak nor a limit
point of the sequence. Then log |z − ak| is bounded above and below in a neighborhood
of z0, so the series defining u(z) converges uniformly in the neighborhood. The limit of
a uniformly convergent series of harmonic functions is harmonic, so u(z) is harmonic off
the closure of the sequence {ak}.

Next suppose that z0 is a point in the closure of the sequence {ak}. Split the sum
defining u(z) into the sum of terms for which |ak − z0| < 1/2 and the sum of terms for
which |ak − z0| ≥ 1/2. The second sum converges uniformly for z in a neighborhood
of z0 (as in the preceding paragraph) and represents a harmonic function there. The
first sum is a sum of negative terms (for z in a neighborhood of z0), so the partial sums
form a decreasing sequence of subharmonic functions. By Theorem 7, the partial sums
converge to a subharmonic function.

Thus u is subharmonic in the whole plane C. Notice that u takes the value −∞
at each point ak, but the set where u equals −∞ is a set of measure zero, since the
subharmonic function u is locally integrable by Lemma 3.
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Example 14. Let G be a proper subdomain of the complex plane. Then − log dist(z, bG)
is a subharmonic function for z in G.

Indeed, if a is a point of bG, then − log |z − a| is a harmonic function on G. Since

sup{− log |z − a| : a ∈ bG } = − inf{ log |z − a| : a ∈ bG } = − log dist(z, bG),

it is a consequence of Theorem 7 that − log dist(z, bG) is subharmonic.

Plurisubharmonic functions

Introduction An upper semi-continuous function is called a plurisubharmonic function
if its restriction to every complex line is subharmonic. The name and the fundamental
properties of plurisubharmonic functions are due to Lelong.12

It will turn out that a proper subdomain of Cn is convex with respect to the plurisub-
harmonic functions if and only if − log dist(z, bG) is a plurisubharmonic function for z
in G; a domain satisfying this property is called pseudoconvex.

Since log |f | is plurisubharmonic when f is holomorphic, it follows that every holo-
morphically convex domain is pseudoconvex. The famous Levi problem, to be solved
later, is to prove the converse: every pseudoconvex domain is a domain of holomorphy.

Equivalent definitions Suppose that u is an upper semi-continuous function on a do-
main D in Cn. The following properties are all equivalent to u being a plurisubharmonic
function on D.

1. For every point z in D and every vector w in C
n, the function λ 7→ u(z + λw) is a

subharmonic function of λ in C where it is defined. (This is the precise statement
of what it means for the restriction of u to every complex line to be subharmonic.)

2. For every holomorphic mapping from the unit disc into D, the composite function
u ◦ f is subharmonic on the unit disc. (In other words, the restriction of u to a
one-dimensional complex variety is subharmonic.)

3. If u is twice continuously differentiable, then

n∑

j=1

n∑

k=1

∂2u

∂zj∂zk

wjwk ≥ 0 for every vector w in C
n.

The notation ∂/∂zj means 1
2
(∂/∂xj − i∂/∂yj) in terms of the underlying real

coordinates for which zj = xj + iyj . Similarly, ∂/∂zj means 1
2
(∂/∂xj + i∂/∂yj).

This notation for complex partial derivatives seems to be due to the Austrian
mathematician Wilhelm Wirtinger.13

12Pierre Lelong, Les fonctions plurisousharmoniques, Annales scientifiques de l’École Normale
Supérieure Sér. 3 62 (1945) 301–338.

13W. Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Mathema-
tische Annalen 97 (1927) 357–376.

28



3 Convexity

If u is not twice differentiable, then one can interpret the preceding inequality in
the sense of distributions. Alternatively, u is the limit of a decreasing sequence of
infinitely differentiable functions satisfying the inequality.

4. For every closed polydisc of arbitrary orientation contained in D, the value of u at
the center of the polydisc is at most the average of u on the torus in the boundary
of the polydisc. It is equivalent to say that each point of D has a neighborhood
such that the indicated property holds for polydiscs contained in the neighborhood.

The last property needs some explanation. A polydisc is a product of one-dimensional
discs. Part of the boundary of the polydisc is the Cartesian product of the boundaries
of the one-dimensional discs. This Cartesian product of circles is a multi-dimensional
torus. There is no standard designation for this torus, which different authors call by
various names, such as “distinguished boundary”, “skeleton”, and “spine”. Lelong uses
the French word “arète”. The words “arbitrary orientation” mean that the polydisc
need not have its sides parallel to the coordinate axes: the polydisc could be rotated by
a unitary transformation.

It is useful to look at some examples of plurisubharmonic functions before proving the
equivalence of the various properties. If f is a holomorphic function, then |f | and log |f |
are plurisubharmonic because the restriction of f to every complex line is a holomorphic
function of one variable.

Less obvious examples are log(|z1|2 + |z2|2) and log(1 + |z1|2 + |z2|2). The plurisub-
harmonicity could be verified by computing second derivatives and checking that the
complex Hessian matrix is non-negative, but here is an alternate approach that han-
dles the higher-dimensional analogue with no extra work. Observe that |z1|2 + |z2|2 =
sup{ |z1w1 + z2w2| : |w1|2 + |w2|2 = 1 }. Now for fixed values of w1 and w2, the function
z1w1 + z2w2 is a holomorphic function of z1 and z2, so log |z1w1 + z2w2| is plurisub-
harmonic. The supremum of a family of plurisubharmonic functions, if upper semi-
continuous, is plurisubharmonic [just as in the one-dimensional case], so log(|z1|2 + |z2|2)
is plurisubharmonic. The same argument shows that log(|z1|2+|z2|2+|z3|2) is a plurisub-
harmonic function in C3, and fixing z3 equal to 1 shows that log(1 + |z1|2 + |z2|2) is a
plurisubharmonic function in C2.

The example (log |z1|)(log |z2|) shows that a function can be subharmonic in each
variable separately without being plurisubharmonic. On the open set where z1z2 6= 0,
the function is even harmonic in each variable separately, but the determinant of the
complex Hessian is negative, so the function is not plurisubharmonic. A function that is
subharmonic in each variable separately has the sub-mean-value property on polydiscs
with faces parallel to the coordinate axes, so property (4) needs to allow polydiscs of
arbitrary orientation.

It is tempting to try to extend the list of equivalent properties in parallel with the
equivalent properties for subharmonicity. One might define a function to be “subpluri-
harmonic” if whenever it is bounded above on the boundary of a compact set by a
pluriharmonic function, then it is bounded above on the whole set by the plurihar-
monic function. (A function is pluriharmonic if its restriction to each complex line is
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harmonic. Equivalently, a function is pluriharmonic if locally it is the real part of a
holomorphic function.) A plurisubharmonic function is subpluriharmonic, but the con-
verse is false. Indeed, every plurisubharmonic function is subharmonic (as a function
on R2n), every pluriharmonic function is harmonic, and every subharmonic function is
subpluriharmonic. The function |z1|2 − |z2|2 is harmonic (as a function on R4), hence
subpluriharmonic, but not plurisubharmonic.

Proof of the equivalence. Suppose at first that u is twice continuously differentiable. In
that case, saying that u(z + λw) is subharmonic as a function of λ is the same as saying
that the Laplacian is non-negative. The Laplacian is 4

∑n
j=1

∑n
k=1 ujkwjwk. Hence

property (1) implies property (3).
To see that (3) implies (2), observe that the composite function u ◦ f is subharmonic

precisely when its Laplacian is non-negative, and when f is a holomorphic mapping, the
chain rule implies that the Laplacian of u ◦ f equals 4

∑n
j=1

∑n
k=1 ujkfjfk.

Evidently property (2) implies property (1). Hence properties (1), (2), and (3) are all
equivalent when u is smooth.

When u is not smooth, property (2) still trivially implies property (1). To prove the
converse, take a decreasing sequence of smooth plurisubharmonic functions converging
to u (by convolving u with smooth mollifying functions, just as in one variable). For
the smooth approximants, property (2) holds by the first part of the proof, and this
property evidently continues to hold in the limit.

It remains to show that property (1) is equivalent to property (4). Observe that the
average of an upper semi-continuous function over a sufficiently small circle exceeds the
value of the function at the center of the circle by arbitrarily little. If (4) holds, then
let n − 1 of the radii tend to 0 to see that the restriction of u to a disc in a complex
line satisfies the sub-mean-value property. Thus (4) implies (1). Conversely, suppose
(1) holds. Now property (1) is unchanged by composition with a unitary transformation
(since unitary transformations take complex lines to complex lines), so it suffices to
check (4) for polydiscs with their faces parallel to the coordinate planes. Integrate on
the torus by integrating over each circle separately. Applying (1) for each integral shows
that (4) holds.

Before stating a theorem characterizing pseudoconvexity, it is convenient to formulate
yet another property, the continuity principle (also known as the Kontinuitätssatz ). An
analytic disc is a continuous mapping from the closed unit disc D in C into Cn that is
holomorphic on the open disc. Often an analytic disc is identified with its image (at
least when the mapping is one-to-one). Here are two versions of the continuity principle
for analytic discs. The principle may or may not hold for a particular domain G in Cn.

(a) If for each α in some index set A, the mapping fα : D → G is an analytic disc
whose image is contained in the domain G, and if there is a compact subset of G
that contains

⋃
α∈A fα(bD) (the “boundaries” of the analytic discs), then there is a

compact subset of G that contains
⋃

α∈A fα(D).

(b) If ft : D → Cn is a family of analytic discs varying continuously with respect to
the parameter t in the interval [0, 1], if

⋃
0≤t≤1 ft(bD) is contained in the domain G
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(hence automatically contained in a compact subset of G), and if f0(D) is contained
in G, then

⋃
0≤t≤1 ft(D) is contained in G (hence in a compact subset of G).

Here is the statement of the theorem that characterizes pseudoconvex domains by
four equivalent properties. A sufficiently smooth function is called strictly (or strongly)
plurisubharmonic if its complex Hessian matrix is positive definite (rather than semi-
definite).

Theorem 8. The following properties of a domain G in Cn are equivalent.

1. There exists an infinitely differentiable, strictly plurisubharmonic exhaustion func-
tion for G.

2. The domain G is convex with respect to the plurisubharmonic functions.

3. The continuity principle holds for G.

4. The function − log dist(z, bG) is plurisubharmonic.

Exercise 16. The unit ball { z ∈ Cn : ‖z‖ < 1 } (where ‖z‖2 = |z1|2 + · · · + ‖zn|2)
is convex, hence convex with respect to the holomorphic functions, hence convex with
respect to the plurisubharmonic functions. The distance from z to the boundary equals
1 − ‖z‖. Verify that − log(1 − ‖z‖) is plurisubharmonic and that − log(1 − ‖z‖2) is an
infinitely differentiable, plurisubharmonic exhaustion function.

Proof of Theorem 8. The plan of the proof is (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1).
It is easy to see that (1) implies (2): if K is a compact subset of G, and u is a plurisub-

harmonic exhaustion function, then u is bounded above on K by some constant M , and
the plurisubharmonic hull of K is contained in { z ∈ G : u(z) ≤ M }, which by is a
compact subset of G by the definition of an exhaustion function.

Suppose (2) holds. If f : D → G is an analytic disc, and u is a plurisubharmonic
function on G, then u ◦ f is a subharmonic function on the unit disc, so u(f(t)) ≤
max{ u(f(eiθ)) : 0 ≤ θ ≤ 2π } for every point t in D. In other words, f(D) is contained in
the plurisubharmonic hull of f(bD). Hence version (a) of the continuity principle holds:
the plurisubharmonic hull of the compact set containing

⋃
α∈A fα(bD) is a compact set

containing
⋃

α∈A fα(D). To get version (b) of the continuity principle, consider the
set S of points t in the interval [0, 1] for which ft(D) ⊂ G. This set is nonvoid, since
it contains 0 by hypothesis. If t ∈ S, then ft(D) is a compact subset of G (since ft

is continuous on the closed disc D), so fs(D) ⊂ G for s near t (since the discs vary
continuously with respect to the parameter). Thus S is a closed set. Version (a) of the
continuity principle implies that the set S is closed. Hence S is all of [0, 1], which is
what needed to be shown. Consequently, (2) implies (3).

Suppose that (3) holds. To see that − log dist(z, bG) is plurisubharmonic, fix a point z0

in G and a vector w0 in Cn such that the closed disc { z0 + λw0 : |λ| ≤ 1 } lies in G. To
show that − log dist(z0 + λw0, bG) is subharmonic as a function of λ, it suffices to fix a
polynomial p of one complex variable such that

− log dist(z0 + λw0, bG) ≤ Re p(λ) when |λ| = 1
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and to show that the same inequality holds when |λ| < 1. This problem translates
directly into the equivalent problem of showing that if

dist(z0 + λw0, bG) ≥ |e−p(λ)| when |λ| = 1,

then the same inequality holds when |λ| < 1. A further reformulation is to show that if,
for every point ζ in the open unit ball of Cn, the point z0 +λw0 + ζe−p(λ) lies in G when
|λ| = 1, then the same property holds when |λ| < 1.

Now λ 7→ z0+λw0+ζe−p(λ) is a continuous family of analytic discs in Cn parametrized
by ζ . When ζ = 0, the analytic disc lies in G by hypothesis. Also by hypothesis, the
boundaries of the analytic discs lie in G. Hence version (b) of the continuity principle
(applied to the line segment joining 0 to ζ) implies that the analytic discs all lie in G.
Thus (3) implies (4).

Finally, suppose that (4) holds, in other words, − log dist(z, bG) is plurisubharmonic.
To get (1), all that needs to be done is to modify this function to make it smooth and
strictly plurisubharmonic. Here are the technical details.

To start, let u(z) denote max(|z|2,− log dist(z, bG)). Then u is a continuous, plurisub-
harmonic exhaustion function for G. By adding a constant to u, one may assume that
the minimum value of u on G is 0. For each positive integer j, let Gj denote the subset
of G on which u < j. The sets Gj form an increasing sequence of relatively compact
open subsets of G.

Extend u to be 0 outside G, and convolve u with a smooth mollifying function with
small support to get an infinitely differentiable function on Cn that is plurisubharmonic
on a neighborhood of the closure of Gj and that closely approximates u from above
on that neighborhood. Adding εj|z|2 for a suitably small positive constant εj gives a
smooth function uj on Cn, strictly plurisubharmonic on a neighborhood of the closure
of Gj , such that u < uj < u + 1 on Gj. It remains to splice the functions uj together to
get the required smooth, strictly plurisubharmonic exhaustion function for G.

A natural way to build the final function is to use an infinite series. A simple way
to guarantee that the sum remains infinitely differentiable is to make the series locally
finite. To carry out this plan, let χ be an infinitely differentiable, convex function of one
real variable such that χ(t) = 0 when t ≤ 0, and both χ′ and χ′′ are positive when t > 0.

Exercise 17. Verify that an example of such a function χ is

{
0, if t ≤ 0,

ete−1/t, if t > 0.

Exercise 18. Show that if ϕ is any increasing convex function of one real variable, and
if v is any plurisubharmonic function, then the composite function ϕ ◦ v is plurisubhar-
monic. Moreover, if ϕ is strictly convex and v is strictly plurisubharmonic, then ϕ ◦ v is
strictly plurisubharmonic.

The remainder of the proof consists of inductively choosing positive constants cj to
make

∑∞
j=1 cjχ(uj(z) − j + 1) have the required properties. The induction statement is
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that on the set Gk, the sum
∑k

j=1 cjχ(uj(z) − j + 1) is strictly plurisubharmonic and
larger than u(z).

For the basis step (k = 1), observe that u1 is strictly larger than u on G1 and hence is
strictly positive there. By Exercise 18, the composite function χ◦u1 is strictly plurisub-
harmonic on G1. Take the constant c1 so large that c1χ ◦ u1 exceeds u on G1.

Suppose now that the induction statement holds for the integer k. If z is in Gk+1 but
outside Gk, then k ≤ u(z) < uk+1(z); for such z, the function χ(uk+1(z) − k) is positive
and strictly plurisubharmonic. By multiplying by a suitably large constant ck+1, it is
possible to arrange for

∑k+1
j=1 cjχ(uj(z)− j +1) to be both strictly plurisubharmonic and

larger than u(z) when z is in Gk+1 but outside Gk. Since the function χ(uk+1(z) − k)
is non-negative and (weakly) plurisubharmonic on all of Gk+1, the induction hypothesis
implies that the sum of k +1 terms is strictly plurisubharmonic and larger than u on all
of Gk+1.

It remains to check that the infinite series does converge to an infinitely differentiable
function on G. This property is local, so it is enough to check on a ball whose closure
is contained in G and hence in some Gm. If j ≥ m + 2, then χ(uj(z) − j + 1) = 0 when
z ∈ Gm (since uj < u+1 on Gj), so only finitely many terms of the sum contribute on the
ball. Hence the series converges to an infinitely differentiable function; the preceding
paragraph shows that the limit function is strictly plurisubharmonic; since the sum
exceeds the exhaustion function u, it is an exhaustion function too.

3.3 The Levi problem

The characterizations of pseudoconvexity considered so far are essentially internal to
the domain. Eugenio Elia Levi discovered14 a characterization of pseudoconvexity that
involves the differential geometry of the boundary of the domain. This condition requires
the boundary to be a twice continuously differentiable manifold. Since Levi’s condition is
local, one ought first to observe that pseudoconvexity is a local property of the boundary.

Theorem 9. A domain G in Cn is pseudoconvex if and only if each boundary point of G
has an open neighborhood U in Cn such that the intersection U ∩ G is pseudoconvex.

Proof. If G is pseudoconvex, and B is a ball centered at a boundary point, then the
intersection B ∩G is pseudoconvex because max(− log dist(z, bB),− log dist(z, bG)) is a
plurisubharmonic exhaustion function.

Conversely, suppose U is a neighborhood of a boundary point p such that U ∩ G is
pseudoconvex, that is, such that − log dist(z, b(U ∩ G)) is plurisubharmonic on U ∩ G.
If z is closer to p than to bU , then dist(z, bG) = dist(z, b(U ∩ G)). Consequently, there
is an open neighborhood V of bG such that − log dist(z, bG) is plurisubharmonic for z
in V ∩ G. What remains to do is to modify this function to get a plurisubharmonic
function in all of G. If G is bounded, then G \ V is a compact set, and − log dist(z, bG)

14E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse,
Annali di Matematica Pura ed Applicata (3) 17 (1910) 61–87.
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has an upper bound M on G\V . Then max(M,− log dist(z, bG)) is a plurisubharmonic
exhaustion function for G.

If G is unbounded, then the set G \ V is closed but not necessarily compact. For
each non-negative real number r, the continuous function − log dist(z, bG) has a max-
imum value on the intersection of G \ V with the closed ball centered at 0 with ra-
dius r. By Exercise 19 below, there is a function ϕ(|z|) that is plurisubharmonic on Cn,
that exceeds − log dist(z, bG) when z is in G \ V , and that blows up at infinity. Then
max(ϕ(|z|),− log dist(z, bG)) is a plurisubharmonic exhaustion function for G, so G is
pseudoconvex.

Thus pseudoconvexity is a local property of the boundary of a domain. None of the
properties so far shown to be equivalent to holomorphic convexity appears to be local.
In particular, it is not evident how to get a globally defined holomorphic function that is
singular at a boundary point given a locally defined holomorphic function that is singular
at that point. The essence of the Levi problem—the equivalence between holomorphic
convexity and pseudoconvexity—is to show that being a domain of holomorphy actually
is a local property of the boundary of the domain.

Exercise 19. If g is a continuous function on [0,∞), then there is an increasing convex
function ϕ such that ϕ(t) > g(t) for all t.

3.3.1 The Levi form

Suppose that in a neighborhood of a boundary point of a domain there is a real-valued
function ρ such that the boundary of the domain is the set where ρ = 0, the interior
of the domain is the set where ρ < 0, and the exterior of the domain is the set where
ρ > 0. Suppose additionally that ρ has continuous partial derivatives of second order
and that the gradient of ρ is nowhere equal to 0 on the boundary of the domain. The
implicit function theorem then implies that the boundary of the domain (in the specified
neighborhood) is a twice differentiable (real) manifold. The abbreviation for this set of
conditions is that the domain has “class C2 boundary” or “class C2 smooth boundary”.

Levi’s condition is that when z is in the boundary of the domain,
n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk
wjwk ≥ 0 for vectors w in C

n such that
n∑

j=1

∂ρ

∂zj
wj = 0.

Notice that Levi’s condition does not say that the function ρ is plurisubharmonic, be-
cause the inequality holds not for all vectors w in Cn but only for complex tangent
vectors (vectors satisfying the side condition). The indicated Hermitian quadratic form,
acting on the complex tangent space, is known as the Levi form. If the Levi form is
strictly positive definite, then the domain is called strictly pseudoconvex (or strongly
pseudoconvex).

Exercise 20. Although the Levi form depends on the choice of the defining function ρ,
positivity (or non-negativity) of the Levi form is independent of the choice of defining
function. Moreover, positivity (or non-negativity) of the Levi form is invariant under
local biholomorphic changes of coordinates.
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One can rephrase Levi’s condition as the statement that there exists a positive con-
stant C such that when z is in the boundary of the domain,

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk

wjwk + C‖w‖
∣∣∣∣

n∑

j=1

∂ρ

∂zj

wj

∣∣∣∣ ≥ 0 for all vectors w in C
n.

An advantage of this reformulation is that it eliminates the side condition about the
complex tangent space: the inequality holds for all vectors w. The second formulation
evidently implies the first statement of Levi’s condition. To see, conversely, that Levi’s
condition implies the reformulation, decompose an arbitrary vector w into an orthogonal
sum w′+w′′, where

∑n
j=1 ρjw

′
j = 0 (here ρj is a typographically convenient abbreviation

for ∂ρ/∂zj), and
∑n

j=1 ρjw
′′
j =

∑n
j=1 ρjwj. By hypothesis, the length of the gradient

of ρ is bounded away from 0, so the length of the vector w′′ is comparable to
∑n

j=1 ρjwj.
Substituting w′ + w′′ for w in Levi’s condition shows that

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk
wjwk =

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk
w′

jw
′
k + O(‖w‖ ‖w′′‖) ≥ −C‖w‖

∣∣∣∣
n∑

j=1

∂ρ

∂zj
wj

∣∣∣∣

for some constant C, which is the reformulated version of the Levi condition.

Theorem 10. A domain with class C2 smooth boundary is pseudoconvex if and only if
the Levi form is non-negative definite at each boundary point.

Proof. First suppose that the domain G is pseudoconvex in the sense that the negative
of the logarithm of the distance to the boundary of G is plurisubharmonic. A convenient
function ρ to use as defining function is the signed distance to the boundary:

ρ(z) =

{
− dist(z, bG), z ∈ G,

+ dist(z, bG), z /∈ G.

It follows from the implicit function theorem that this defining function is class C2 close
to the boundary of G. By hypothesis, the complex Hessian of − log |ρ| is non-negative
inside G:

n∑

j=1

n∑

k=1

(
−1

ρ

∂2ρ

∂zj∂zk
+

1

ρ2

∂ρ

∂zj

∂ρ

∂zk

)
wjwk ≥ 0 for every w in C

n.

Since −1/ρ is positive at points inside the domain, it follows that

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk

wjwk ≥ 0 when z is inside and
n∑

j=1

∂ρ

∂zj

wj = 0.

As observed above, this Levi condition is equivalent to the existence of a positive con-
stant C such that

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk

wjwk + C‖w‖
∣∣∣∣

n∑

j=1

∂ρ

∂zj

wj

∣∣∣∣ ≥ 0 for all vectors w in C
n.
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The constant C depends on the maximum of the second derivatives of ρ and the max-
imum of 1/|∇ρ|, and these quantities are bounded near bG by hypothesis. Since ρ
has continuous second derivatives, it is possible to take the limit as z approaches the
boundary, which gives Levi’s condition on the boundary.

For the converse, it is necessary to deduce the existence of a plurisubharmonic ex-
haustion function from Levi’s condition. In view of Theorem 9, it will suffice to work
locally on, say, a small ball that intersects the boundary of the domain.

The implicit function theorem implies that a class C2 boundary can be written lo-
cally as the graph of a twice continuously differentiable real-valued function. After
a complex linear change of coordinates, a local defining function ρ takes the form
ϕ(Re z1, Im z1, . . . , Re zn−1, Im zn−1, Re zn)−Im zn. The hypothesis says that there exists
a positive constant C such that at boundary points,

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk
wjwk + 2C‖w‖

∣∣∣∣
n∑

j=1

∂ρ

∂zj
wj

∣∣∣∣ ≥ 0 for all vectors w in C
n

(the factor of 2 being inserted for later convenience). Since ρ depends linearly on Im zn,
derivatives of ρ are independent of Im zn. Thus the preceding condition holds not only
on the boundary of G but also off the boundary, in a ball in Cn (perhaps a smaller ball
than the initial one).

Let u denote − log |ρ|; the goal is to modify the function u to get a local plurisub-
harmonic function in G that blows up at the boundary. At points inside G, the same
calculation as above shows for every vector w in Cn that

n∑

j=1

n∑

k=1

∂2u

∂zj∂zk

wjwk =
1

|ρ|

n∑

j=1

n∑

k=1

∂2ρ

∂zj∂zk

wjwk +
1

ρ2

n∑

j=1

n∑

k=1

∂ρ

∂zj

∂ρ

∂zk

wjwk

≥ −2C

|ρ| ‖w‖
∣∣∣∣

n∑

j=1

∂ρ

∂zj
wj

∣∣∣∣+
1

ρ2

∣∣∣∣
n∑

j=1

∂ρ

∂zj
wj

∣∣∣∣
2

.

Since −2ab ≥ −a2 − b2, it follows that

n∑

j=1

n∑

k=1

∂2u

∂zj∂zk

wjwk ≥ −C2 ‖w‖2.

The preceding inequality implies that u(z) + C2‖z‖2 is a plurisubharmonic function
in the intersection of G with a small ball B, and this function blows up at the boundary
of G. If the ball B has center a and radius r, then max(− log(r−‖z−a‖), u(z)+C2‖z‖2)
is a plurisubharmonic exhaustion function for B ∩ G. Thus G is locally pseudoconvex
near every boundary point, so by Theorem 9, the domain G is pseudoconvex.

Knowing Levi’s condition makes it possible to rephrase the notion of pseudoconvexity
in the following way.
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Theorem 11. A domain is pseudoconvex if and only if it can be expressed as the union
of an increasing sequence of class C∞ smooth domains each of which is locally biholo-
morphically equivalent to a strongly convex domain.

Proof. A convex domain is pseudoconvex, and pseudoconvexity is a local property that
is biholomorphically invariant, so a domain that is locally equivalent to a convex domain
is pseudoconvex. The increasing union of pseudoconvex domains is pseudoconvex by, for
instance, version (b) of the Kontinuitätssatz. Thus one direction of the theorem follows
by putting together prior results.

Conversely, suppose that G is pseudoconvex. Then G admits a C∞, strictly plurisub-
harmonic exhaustion function u. Fix a base point in G and consider the connected
component containing that point of the sub-level set where u < c. By Sard’s theorem,15

the gradient of u is non-zero on the set where u = c for most values of c (all but a set
of values of c of measure zero in R). Thus G is exhausted by an increasing sequence of
C∞ strictly pseudoconvex domains.

It remains to show that each smooth level set where the strictly plurisubharmonic
function u equals c is locally equivalent to a strongly convex domain via a local biholo-
morphic mapping. Fix a point a such that u(a) = c, and consider the Taylor expansion
of u(z) − c in a neighborhood of a:

2 Re

[ n∑

j=1

∂u

∂zj
(a)(zj − aj) +

1

2

n∑

j=1

n∑

k=1

∂2u

∂zj∂zk
(a)(zj − aj)(zk − ak)

]

+
n∑

j=1

n∑

k=1

∂2u

∂zj∂zk

(a)(zj − aj)(zk − ak) + O(‖z − a‖3).

(3.1)

The expression whose real part appears on the first line is a holomorphic function of z
whose gradient is nonzero at the point a, so this function will serve as the first coordi-
nate w1 of a local biholomorphic change of coordinates w(z) such that w(a) = 0. In a
neighborhood of the point a, the level surface where u(z)− c = 0 has a defining function
ρ(w) in the new coordinates of the form

2 Rew1 +
n∑

j=1

n∑

k=1

Ljkwjwk + O(‖w‖3),

where the matrix Ljk is a positive definite Hermitian matrix corresponding to the positive
definite matrix ujk in the new coordinates. Thus the quadratic part of the real Taylor
expansion of ρ in the real coordinates corresponding to w is positive definite, which
means that the level set where ρ = 0 is strongly convex in the real sense.

Exercise 21. Solve the Levi problem for complete Reinhardt domains in C2 by showing
that Levi’s condition in that setting is equivalent to logarithmic convexity.

15Arthur Sard, The measure of the critical values of differentiable maps, Bulletin of the American
Mathematical Society 48 (1942) 883–890. Since the function u takes values in R1, the claim already
follows from an earlier result of Anthony P. Morse, The behavior of a function on its critical set,
Annals of Mathematics (2) 40 (1939), no. 1, 62–70.
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3.3.2 Applications of the ∂ problem

Theorem 9 shows that pseudoconvexity is a local property of the boundary of a domain,
but it is far from obvious that holomorphic convexity is a local property of the boundary.
To solve the Levi problem for a general pseudoconvex domain, one needs some technical
machinery to forge the connection between the local and the global. One approach is
sheaf theory, another is integral representations, and a third is the ∂-equation. The
following discussion uses the third method, for the idea seems the most intuitive.

Some notation is needed: if f is a function, then ∂f denotes
∑n

j=1(∂f/∂zj) dzj , a

so-called (0, 1)-form. A function f is holomorphic precisely when ∂f = 0. The question
of interest here is whether a given (0, 1)-form α, say

∑n
j=1 aj(z) dzj , can be written as ∂f

for some function f . In order for the mixed second partial derivatives of f to be equal,
it must happen that ∂aj/∂zk = ∂ak/∂zj for all j and k; these necessary conditions are
abbreviated as ∂α = 0; in words, the form α is ∂-closed.

The key ingredient in solving the Levi problem is the following solvability theorem for
the inhomogeneous Cauchy-Riemann equations.

Theorem 12. Let G be a bounded pseudoconvex domain in Cn with C∞ smooth bound-
ary. If α is a ∂-closed (0, 1)-form with C∞ coefficients in G, then there exists a C∞

function f in G such that ∂f = α.

The conclusion holds without any hypothesis about boundary smoothness, but then the
proof is more technical. For present purposes, it suffices even to prove the theorem under
the additional hypothesis of strong pseudoconvexity.

Solution of the Levi problem for bounded strongly pseudoconvex domains

Granted Theorem 12, one can easily solve the Levi problem for the approximating
strongly pseudoconvex domains arising in the proof of Theorem 11. Indeed, let G be a
bounded domain with boundary defined by an infinitely differentiable strictly plurisub-
harmonic function; it is not necessary to assume here that the gradient of the defining
function is non-zero on the boundary. To show that G is a domain of holomorphy, it
suffices to produce a global holomorphic function on G that is singular at a specified
boundary point p. The proof of Theorem 11 provides a local holomorphic function fp

defined in a neighborhood of p that is equal to 0 at p and that has no zero on G\{p}. In-
deed, the holomorphic function whose real part appears in the first line of formula (3.1)
will serve for fp, even on those level sets of the strictly plurisubharmonic function u
that happen to be non-smooth. The goal is to modify the reciprocal 1/fp to produce a
globally defined function on G that is singular at p.

Let χ be a smooth, real-valued, non-negative cut-off function that is identically equal
to 1 in a neighborhood of p and identically equal to 0 outside a larger neighborhood
(contained in the set where fp is defined). The function χ/fp is defined globally on G
and blows up at p, but χ/fp is not globally holomorphic. The theorem on solvability of
the ∂-equation makes it possible to adjust this function to get a holomorphic function.
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Indeed, the (0, 1) form (∂χ)/fp is identically equal to 0 in a neighborhood of p, and
since the zero set of fp touches G only at p, this form has C∞ coefficients in a neigh-
borhood D of G, which may be taken to be a strongly pseudoconvex domain with
C∞ smooth boundary. The form (∂χ)/fp is ∂-closed on this domain D, since ∂χ is
∂-closed, and 1/fp is holomorphic away from the zeroes of fp. Theorem 12 produces a
C∞ function v on D such that ∂v = (∂χ)/fp.

Consequently, the function v − (χ/fp) is a holomorphic function on the set where
fp 6= 0, in particular, on G \ {p}. The function v, being smooth on G, is bounded there,
so the holomorphic function v− (χ/fp) is singular at p. Thus there exists a holomorphic
function on all of G that is singular at a prescribed boundary point, so G is a domain
of holomorphy.

This argument solves the Levi problem for bounded strongly pseudoconvex domains,
modulo the proof of solvability of the ∂-equation.

It is worthwhile noticing that the preceding argument essentially contains the exis-
tence of a peak function on the strongly pseudoconvex domain G, that is, a function h
holomorphic on G such that h(p) = 1, while |h(z)| < 1 when z ∈ G \ {p}. In fact,
one may as well assume that Re fp < 0 on the part of G \ {p} inside the neighborhood
where fp is defined (see formula (3.1)). Let g denote 1/[c+ v − (χ/fp)], where c is a real
constant larger than the maximum of |v| on G. Then g is well defined and holomorphic
on G \ {p}, because the denominator has positive real part (and so is not 0). On the
other hand, in a neighborhood of p, the function g equals fp/[(c + v)fp − 1], so g is
holomorphic also in a neighborhood of p and equals 0 at p. Thus g is holomorphic in a
neighborhood of G, it has positive real part on G \ {p}, and it equals 0 at p. Therefore
e−g serves as the required holomorphic peak function h.

Proof of the Oka-Weil theorem

Another application of the solvability of the ∂-equation on strongly pseudoconvex do-
mains is the Oka-Weil theorem (Theorem 4). Indeed, the tools are at hand to prove the
following generalization.

Theorem 13. If G is a domain of holomorphy in Cn, and K is a compact subset
of G that is convex with respect to the holomorphic functions on G, then every function
holomorphic in a neighborhood of K can be approximated uniformly on K by functions
holomorphic on G.

Theorem 4 follows by taking G equal to Cn, because convexity with respect to entire
functions is the same as polynomial convexity, and approximation by entire functions is
equivalent to approximation by polynomials.

Proof of Theorem 13. Suppose f is holomorphic in an open neighborhood U of K, and
ε is a specified positive number. The goal is to approximate f on K within ε by functions
that are holomorphic on the domain G.

Let L be a compact subset of G containing U and convex with respect to O(G). The
initial goal is to show that f can be approximated on K within ε by functions that are
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holomorphic in a neighborhood of L; a subsequent limiting argument as L expands will
finish the proof.

Fix an open neighborhood V of L having compact closure in G. The first observation
is that there are finitely many holomorphic functions f1, . . . , fk on G such that

K ⊆ { z ∈ V : |f1(z)| ≤ 1, . . . , |fk(z)| ≤ 1 } ⊂ U.

In other words, the compact set K can be closely approximated from outside by a com-
pact analytic polyhedron defined by functions that are holomorphic on G. The reason
is similar to the proof of Theorem 3: the set V \ U is compact, and each point of this
set can be separated from the holomorphically convex set K by a function holomorphic
on G, so a compactness argument furnishes a finite number of separating functions.
Hence one might as well assume from the start that K is equal to the indicated analytic
polyhedron.

For the same reason, the holomorphically convex compact set L can be approximated
from outside by a compact analytic polyhedron contained in V and defined by a finite
number of functions holomorphic on G. Again, one might as well assume that L equals
that analytic polyhedron.

The main step in the proof is to show that functions holomorphic in a neighborhood
of L are dense in the functions holomorphic in a neighborhood of { z ∈ L : |f1(z)| ≤ 1 }.
An evident induction on the number of functions defining the polyhedron K then implies
that O(L) is dense in O(K).

It is here that Oka’s great insight enters: he had the idea that raising the dimension
by looking at the graph of f1 can simplify matters. Let L1 denote { z ∈ L : |f1(z)| ≤ 1 },
and let D denote the closed unit disc in C. The claim is that if g is a holomorphic
function in a neighborhood of L1, then there is a corresponding function F (z, w) in Cn+1,
holomorphic in a neighborhood of L × D, such that g(z) = F (z, f1(z)) when z is in a
neighborhood of L1. In other words, there is a holomorphic function on all of L × D
whose restriction to the graph of f1 recovers g on L1.

How does this construction help? The point is that F can be expanded in the last vari-
able in a Maclaurin series, F (z, w) =

∑∞
j=0 aj(z)wj , in which the coefficient functions aj

are holomorphic on L. Then g(z) =
∑∞

j=0 aj(z)f1(z)j in a neighborhood of L1, and the
partial sums of this series are holomorphic functions on L that uniformly approximate g
on L1.

To construct F , take an infinitely differentiable cut-off function χ in Cn that is iden-
tically equal to 1 in a neighborhood of L1 and that is identically equal to 0 outside a
slightly larger neighborhood (contained in the set where g is defined). Consider in Cn+1

the (0, 1)-form
g ∂χ

f1(z) − w
, where z ∈ C

n, and w ∈ C.

The only points z where ∂χ(z) 6= 0 are outside L1, where |f1(z)| > 1, so this (0, 1)-form
is well defined and smooth on a neighborhood of L×D. Evidently the form is ∂-closed.
The compact analytic polyhedron L can be approximated from outside by open ana-
lytic polyhedra, so L×D can be approximated from outside by domains of holomorphy
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(more precisely, each connected component can be so approximated). By Theorem 11,
the compact set L×D can be approximated from outside by bounded, smooth, strongly
pseudoconvex open sets. Consequently, the solution of the ∂-equation supplies a smooth
function v in a neighborhood of L × D such that g(z)χ(z) − v(z, w)(f1(z) − w) is holo-
morphic on L×D. This holomorphic function is the required function F (z, w) on L×D
such that F (z, f1(z)) = g(z) on L1.

The proof is now complete that O(L) is dense in O(K). It remains to approximate a
function holomorphic in a neighborhood of K by a function holomorphic on all of G. To
this end, let {Kj}∞j=0 be an exhaustion of G by an increasing sequence of holomorphically
convex compact subsets of G, each containing an open neighborhood of the preceding
one, where K0 may be taken equal to K. By what has already been proved, O(Kj+1)
is dense in O(Kj) for every positive integer j. Suppose given a function f holomorphic
in a neighborhood of K0 and a positive ε. There is a function h1 holomorphic in a
neighborhood of K1 such that |f − h1| < ε/2 on K0, and one can choose inductively a
sequence of functions hj such that hj is holomorphic on Kj, and |hj − hj+1| < ε/2j+1

on Kj. The telescoping series h1 +
∑∞

j=1(hj+1 − hj) then converges uniformly on every
compact subset of G to a holomorphic function that approximates f within ε on K0.

Solution of the Levi problem for arbitrary pseudoconvex domains

What has been shown so far is that if G is a pseudoconvex domain, then there exists
an infinitely differentiable strictly plurisubharmonic exhaustion function u, and the Levi
problem is solvable for the sublevel sets of u, which are thus domains of holomorphy. A
limiting argument is needed to show that G itself is a domain of holomorphy.

For each real number r, let Gr denote the sublevel set { z ∈ G : u(z) < r }, and let Gr

denote its closure, the set { z ∈ G : u(z) ≤ r }. The key lemma is that O(Gt) is dense
in O(Gr) when t > r.

To confirm this density, it suffices by Theorem 13 to show that the compact set Gr

is convex with respect to the holomorphic functions on Gt. If it were not, then its
holomorphic hull (which is a compact subset of Gt because Gt is a domain of holomorphy)
would contain a point p where the restriction of the exhaustion function u to the hull
assumes a maximal value s such that r < s < t. As observed on page 39, there is a
holomorphic peak function h for Gs at p such that h(p) = 1 while |h(z)| < 1 when
z ∈ Gs. Since h is holomorphic in a neighborhood of the holomorphic hull of Gr (and
this hull is by definition a holomorphically convex subset of Gt), Theorem 13 implies that
h can be approximated on this hull by functions holomorphic on Gt. Since h separates p
from Gr, so do holomorphic functions on Gt, and therefore p is not in the holomorphic
hull of Gr after all. Thus Gr is O(Gt)-convex, and O(Gt) is dense in O(Gr).

The same argument with a telescoping series as in the final paragraph of the proof of
Theorem 13 now shows that O(G) is dense in O(Gr) for every r.

To see that G is a domain of holomorphy, fix a compact subset K. What needs to
be shown is that K̂G is a compact subset of G. Fix a sufficiently large real number r
such that K is a compact subset of Gr. Since Gr is a domain of holomorphy, the hull
K̂Gr

is a compact subset of Gr. It suffices to show that K̂G = K̂Gr
. It is automatic that
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K̂Gr
⊆ K̂G, so what needs to be shown is that K̂G ⊆ K̂Gr

. In other words, if p /∈ K̂Gr
,

one needs to find a holomorphic function on G that separates p from K.
If p ∈ Gr, then there is no difficulty, because there is a holomorphic function on Gr

that separates p from K, and O(G) is dense in O(Gr). If p is not in Gr, then p is
in Gs for some value of s larger than r. Since O(Gs) is dense in O(Gr), the intersection

of K̂Gs
with Gr equals K̂Gr

. Therefore the function that is identically equal to 0 in a
neighborhood of K̂Gr

and identically equal to 1 outside Gr is holomorphic on K̂Gs
. By

Theorem 13, this function can be approximated on K̂Gs
by functions holomorphic on Gs

and hence (since O(G) is dense in O(Gs)) by functions holomorphic on G. Thus the

point p can be separated from K by functions holomorphic on G, so p is not in K̂G.
The argument has shown that the pseudoconvex domain G is holomorphically convex,

so G is a domain of holomorphy. The solution of the Levi problem for pseudoconvex
domains is now complete, except for proving the solvability of the ∂-equation on bounded
strongly pseudoconvex domains with smooth boundary.

3.3.3 Solution of the ∂-equation on smooth pseudoconvex domains

The resolution of the Levi problem required knowing that the ∂-equation on a bounded,
(strongly) pseudoconvex domain with smooth boundary is solvable. The following dis-
cussion will prove this solvability using ideas developed in the 1950s and 1960s by
Charles B. Morrey, Donald C. Spencer, Joseph J. Kohn, and Lars Hörmander.

The method is based on Hilbert space techniques. The relevant Hilbert space is
L2(G), the space of square-integrable functions on G with inner product 〈f, g〉 equal to∫

G
f g dV , where dV denotes Lebesgue volume measure. The inner product extends to

forms by summing the inner products of components of the forms.
The operator ∂ acts on square-integrable functions in the sense of distributions, so

one can view ∂ as an unbounded operator from L2(G) to the space of (0, 1)-forms with
L2(G) coefficients. The domain of ∂ is the subspace of functions f for which the distribu-
tional coefficients of ∂f are represented by square-integrable functions. Since compactly
supported, infinitely differentiable functions are dense in L2(G), the operator ∂ is a
densely defined operator, and it is easy to see that this operator is a closed operator.
Consequently, there is a Hilbert space adjoint ∂

∗
, which too is a closed, densely defined

operator.
If f is a (0, 1)-form

∑n
j=1 fj dzj, then

∂f =
∑

1≤j<k≤n

(
∂fj

∂zk

− ∂fk

∂zj

)
dzk ∧ dzj .

If you are unfamiliar with differential forms, then you can view the preceding expression
as simply a formal gadget that is a convenient notation for stating the necessary condition
for solvability of the equation ∂u = f : namely, that ∂f = 0. The goal is to show that
this necessary condition is sufficient on bounded pseudoconvex domains with C∞ smooth
boundary; moreover, the solution u should be infinitely differentiable if the coefficients
of f are infinitely differentiable. (The solution u is not unique, because any holomorphic
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function can be subtracted from u, but if one solution is an infinitely differentiable
function in G, then every solution is infinitely differentiable.)

Reduction to an estimate

The claim is that the whole problem boils down to proving the following basic estimate:
there exists a constant C such that for every (0, 1)-form that belongs to both the domain
of ∂ and the domain of ∂

∗
, one has that

‖f‖2 ≤ C(‖∂f‖2 + ‖∂ ∗
f‖2). (3.2)

It will turn out that the constant C depends on the diameter of the domain, so bound-
edness of the domain is important. Why does this estimate imply solvability of the
∂-equation?

Suppose that g is a specified ∂-closed (0, 1)-form with coefficients in L2(G). Consider
the mapping ∂

∗
f 7→ 〈f, g〉 for (0, 1)-forms f that belong to both the domain of ∂

∗
and

the kernel of ∂. The basic estimate implies that ‖∂ ∗
f‖ dominates ‖f‖, so this mapping

is a well defined bounded linear operator on the subspace ∂
∗
(dom ∂

∗∩ ker ∂) of L2(G).
The Riesz representation theorem produces a function u such that 〈∂ ∗

f, u〉 = 〈f, g〉 for
all f in the intersection of the domain of ∂

∗
and the kernel of ∂. On the other hand, if f is

in the the intersection of the domain of ∂
∗
and the orthogonal complement of the kernel

of ∂, then the same equality holds trivially because sides are zero (namely, 〈f, g〉 = 0
because g is in the kernel of ∂; similarly 〈f, ∂ϕ〉 = 0 for every infinitely differentiable,
compactly supported function ϕ, so 〈∂ ∗

f, ϕ〉 = 0, and therefore ∂
∗
f = 0). Consequently,

u is in the domain of the adjoint of ∂
∗
, hence in the domain of ∂, and 〈f, ∂u〉 = 〈f, g〉

for all f in the domain of ∂
∗
. Since the operator ∂

∗
is densely defined, it follows that

∂u = g.
Thus the basic estimate implies the existence of a solution of the ∂-equation in L2(G).

Additionally, the solution u is supposed to be infinitely differentiable in G when g has
coefficients that are infinitely differentiable functions in G. By Sobolev’s lemma (or
the Sobolev embedding theorem) from functional analysis, it suffices to show that all
distributional derivatives of u are locally square integrable. By hypothesis, each ∂u/∂zj

and all its derivatives are locally square integrable, so what needs to be shown is that
∂|β|u/∂zβ is locally square integrable for each multi-index β. Equivalently, it is enough
to show that for every infinitely differentiable, real-valued function ϕ having compact
support in G, the integral ∫

G

ϕ
∂|β|u

∂zβ

∂|β|u

∂zβ
dV

is finite. Integrating all the derivatives by parts results in a sum of integrals involving
only barred derivatives of u, and these derivatives are already under control. Hence all
derivatives of u are square-integrable on compact subsets of G. Thus the solution u
is infinitely differentiable in G when g is. (The catchphrase here is “interior elliptic
regularity”.)

The much more difficult question of whether the derivatives of the solution u extend
to the boundary of the domain G when g has this property is beyond the scope of these
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notes. This question of boundary regularity is the subject of current research, and the
situation is not completely understood.

Proof of the basic estimate

The cognoscenti sometimes describe the proof of the basic estimate as “an exercise in
integration by parts”. This characterization becomes less of an exaggeration if you admit
Stokes’s theorem as an instance of integration by parts.

The plan is to work on the right-hand side of the basic estimate. It is convenient to
prove the estimate for (0, 1)-forms whose coefficients are sufficiently smooth functions
on the closure of G. There is a technical point that needs attention here: namely, to
prove that such forms are dense in the intersection of the domains of ∂ and ∂

∗
. That the

necessary density does hold is a special case of the so-called Friedrichs lemma, a general
construction of Kurt Friedrichs.16

Suppose, then, that f =
∑n

j=1 fj dzj , and the fj are smooth functions on the closure
of G. Since

|∂f |2 =
∑

1≤j<k≤n

∣∣∣∣
∂fj

∂zk
− ∂fk

∂zj

∣∣∣∣
2

=
1

2

n∑

j=1

n∑

k=1

∣∣∣∣
∂fj

∂zk
− ∂fk

∂zj

∣∣∣∣
2

=

n∑

j=1

n∑

k=1

(∣∣∣∣
∂fj

∂zk

∣∣∣∣
2

− ∂fj

∂zk

∂fk

∂zj

)

,

it follows that

‖∂f‖2 =

n∑

j=1

n∑

k=1

∫

G

(∣∣∣∣
∂fj

∂zk

∣∣∣∣
2

− ∂fj

∂zk

∂fk

∂zj

)
dV. (3.3)

To analyze ‖∂ ∗
f‖ requires a formula for ∂

∗
f . If u is a smooth function on the closure

of G, and ρ is a defining function for G normalized such that |∇ρ| = 1 on bG, then

〈∂ ∗
f, u〉 = 〈f, ∂u〉 =

∫

G

n∑

j=1

fj
∂u

∂zj
dV

=

∫

G

n∑

j=1

−∂fj

∂zj

u dV +

∫

bG

n∑

j=1

fj
∂ρ

∂zj

u dS,

where dS denotes (2n − 1)-dimensional Lebesgue measure on the boundary of G. Since
u is arbitrary, it follows that f is in the domain of ∂

∗
if and only if

n∑

j=1

fj
∂ρ

∂zj

= 0 on the boundary of G, (3.4)

and then ∂
∗
f = −∑n

j=1 ∂fj/∂zj .

16K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Transactions
of the American Mathematical Society 55, no. 1, (1944) 132–151.
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Now integrate by parts:

‖∂ ∗
f‖2 =

n∑

j=1

n∑

k=1

∫

G

∂fj

∂zj

∂fk

∂zk
dV = −

n∑

j=1

n∑

k=1

∫

G

∂2fj

∂zj∂zk
fk dV,

where the boundary term vanishes because f satisfies the boundary condition (3.4) for
membership in the domain of ∂

∗
. Integrating by parts a second time shows that

‖∂ ∗
f‖2 =

n∑

j=1

n∑

k=1

∫

G

∂fj

∂zk

∂fk

∂zj

dV −
n∑

j=1

n∑

k=1

∫

bG

∂fj

∂zk

fk

∂ρ

∂zj

dS.

The boundary condition (3.4) implies that the differential operator
∑n

k=1(fk)(∂/∂zk) is
a tangential differential operator, so applying this operator to (3.4) shows that on the
boundary,

0 =

n∑

k=1

fk

∂

∂zk

( n∑

j=1

fj
∂ρ

∂zj

)
=

n∑

j=1

n∑

k=1

(
fk

∂fj

∂zk

∂ρ

∂zj
+ fjfk

∂2ρ

∂zj∂zk

)
.

Combining this identity with the preceding equation shows that

‖∂ ∗
f‖2 =

n∑

j=1

n∑

k=1

∫

G

∂fj

∂zk

∂fk

∂zj
dV +

n∑

j=1

n∑

k=1

∫

bG

∂2ρ

∂zj∂zk
fjfk dS

≥
n∑

j=1

n∑

k=1

∫

G

∂fj

∂zk

∂fk

∂zj
dV,

(3.5)

where the final inequality uses for the first and only time that the domain G is pseudo-
convex (which implies non-negativity of the boundary term).

Combining (3.3) and (3.5) shows that

‖∂f‖2 + ‖∂ ∗
f‖2 ≥

n∑

j=1

n∑

k=1

∫

G

∣∣∣∣
∂fj

∂zk

∣∣∣∣
2

dV.

Actually, the preceding inequality is not the one that is needed for the proof, but if you
followed the calculation, then you should be able to keep track of some extra terms in
the integration by parts to solve the following exercise.

Exercise 22. If a is an infinitely differentiable positive weight function, then

∫

G

(|∂f |2 + |∂ ∗
f |2) a dV =

n∑

j=1

n∑

k=1

∫

G

∣∣∣∣
∂fj

∂zk

∣∣∣∣
2

a dV +

∫

bG

∂2ρ

∂zj∂zk
fjfk a dS

−
n∑

j=1

n∑

k=1

∫

G

∂2a

∂zj∂zk
fjfk dV + 2 Re

〈 n∑

k=1

fk
∂a

∂zk
, ∂

∗
f

〉

≥ −
n∑

j=1

n∑

k=1

∫

G

∂2a

∂zj∂zk
fjfk dV + 2 Re

〈 n∑

k=1

fk
∂a

∂zk
, ∂

∗
f

〉
.
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In the preceding exercise, replace the positive weight function a by 1 − eb, where b is
a smooth negative function. Then

∂2a

∂zj∂zk

= −eb ∂2b

∂zj∂zk

− eb ∂b

∂zj

∂b

∂zk

,

so it follows that

∫

G

(|∂f |2 + |∂ ∗
f |2) a dV

≥
n∑

j=1

n∑

k=1

∫

G

∂2b

∂zj∂zk

fjfk eb dV +

∫

G

∣∣∣∣
n∑

k=1

∂b

∂zk

fk

∣∣∣∣
2

eb dV −2 Re

〈 n∑

k=1

fk
∂b

∂zk

eb/2, eb/2 ∂
∗
f

〉
.

Applying the Cauchy-Schwarz inequality to the last term on the right-hand side and
using that a + eb = 1 shows that

‖∂ ∗
f‖2 + ‖∂f‖2 ≥

∫

G

|∂ ∗
f |2 + a|∂f |2 dV ≥

n∑

j=1

n∑

k=1

∫

G

∂2b

∂zj∂zk

fjfke
b dV.

Now choose a point p in G, let δ denote the diameter of G, and set the negative function b
equal to −1 + |z − p|2/δ2. The preceding inequality then implies that

‖∂f‖2 + ‖∂ ∗
f |2 ≥ ‖f‖2/(δ2e).

Thus the basic estimate (3.2) holds with the constant C equal to e times the square of
the diameter of the domain G.
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