Fall 2004 MATH 171

Week in Review I
 courtesy of David J. Manuel
 Section 1.1 and 1.2

Section 1.1

1. Given vector a and scalars c and d, prove that $(c d) \mathbf{a}=c(d \mathbf{a})$.
2. Given vector a and scalar c, prove that $|c \mathbf{a}|=$ $|c||\mathbf{a}|$
3. Use vectors to prove the midpoint formula: If C is the midpoint of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, then C has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
4. A quadrilateral has one pair of opposite parallel and of equal length. Use vectors to prove that the other pair of opposite sides is parallel and of equal length.
5. The median of a triangle is a segment from one vertex to the midpoint of the opposite side. Use vectors to prove that the medians of an equilateral triangle are congruent.

Section 1.2

6. Given vectors a and \mathbf{b} and scalar c, prove that $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})$.
7. Given \mathbf{a} and \mathbf{b} are nonzero vectors, prove that $\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a}.
8. Use the definition of the dot product to prove the Cauchy-Schwarz Inequality: $|\mathbf{a} \cdot \mathbf{b}| \leq|\mathbf{a}||\mathbf{b}|$.
9. Use the Cauchy-Schwarz Inequality above to prove the Triangle Inequality: $|\mathbf{a}+\mathbf{b}| \leq|\mathbf{a}|+|\mathbf{b}|$.
10. Given a rectangle $A B C D$, form quadrilateral $E F G H$ by joining the midpoints of consecutive sides (see figure below). Use vectors to prove that $E F G H$ is a rhombus.

