Fall 2004 MATH 171

Week in Review II
courtesy of David J. Manuel
Section 1.3, 2.2, 2.4, 2.3

Section 1.3

1. Prove that $x=\frac{1-t^{2}}{1+t^{2}}, y=\frac{2 t}{1+t^{2}}$ is a parametrization of the unit circle.
2. Given the lines $L_{1}: \mathbf{r}(t)=<3-4 t,-5+3 t>$ and $L_{2}: \mathbf{r}(t)=<-3+8 t, 2-6 t>$, show they are parallel.

Section 2.2, 2.4

For \#3-6, use the epsilon-delta definition to prove the limit:
3. $\lim _{x \rightarrow 3} 2 x+4=10$
4. $\lim _{x \rightarrow 1}-5 x+1=-4$
5. $\lim _{x \rightarrow 2}(x-2)^{2}=0$
6. $\lim _{x \rightarrow 0^{+}} \frac{1}{x^{3}}=\infty$

Section 2.3

7. If $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} g(x)=L_{2}$, prove that $\lim _{x \rightarrow a}[f(x)+g(x)]=L_{1}+L_{2}$
8. Prove the following: if $\lim _{x \rightarrow a} f(x)=L$, then $\lim _{x \rightarrow a} c f(x)=c L$ (assume $c \neq 0$).
9. Prove $\lim _{x \rightarrow 0^{+}} \sqrt{x} \cos \left(\frac{1}{x}\right)=0$.
