Fall 2004 MATH 171

Week in Review III

courtesy of David J. Manuel
Section 2.6 and 2.5

Section 2.6

1. Use the definition to prove that $\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}=0$.
2. Use the definition to prove that $\lim _{x \rightarrow \infty} \frac{2 x}{x+1}=2$.
3. Use the definition to prove that $\lim _{x \rightarrow \infty} \sqrt{x}=\infty$
4. Prove $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=0$.
5. If $\lim _{x \rightarrow \infty} f(x)=L_{1}$ and $\lim _{x \rightarrow \infty} g(x)=L_{2}$, prove $\lim _{x \rightarrow \infty}(f(x)-g(x))=L_{1}-L_{2}$.

Section 2.5

6. Use the definition of continuity to determine whether $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x-2}{x+1} & \text { if } x \neq-1 \\ 1 & \text { if } x=-1\end{array}\right.$ is continuous at $x=-1$ or not.
7. Use the definition of continuity and properties of limits to determine whether $f(x)=x^{3}-x+1$ is continuous at $x=2$ or not.
8. If f is continuous at $x=a$ and g is continuous at $x=a$, prove that $f g$ is continuous at $x=a$.
9. Prove $\sqrt{3}$ exists by proving that there exists a real number c such that $c^{2}=3$.
