Fall 2004 MATH 171

Week in Review VI

courtesy of David J. Manuel Section 3.7, 3.8, and 3.9

Section 3.7

- 1. Prove the "vector rule" for derivatives: If $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, then $\mathbf{r}'(t) = \langle x'(t), y'(t) \rangle$.
- 2. Prove that $\frac{d}{dt}(\mathbf{r}(t) \cdot \mathbf{s}(t)) = \mathbf{r}(t) \cdot \mathbf{s}'(t) + \mathbf{r}'(t) \cdot \mathbf{s}(t).$
- 3. Given $\mathbf{r}(t) = <\cos t, \sin t >$, compute $\mathbf{r}(t) \cdot \mathbf{r}'(t)$. What theorem does your result prove?

Section 3.8

- 4. Find a formula for the *n*th derivative of $f(x) = \frac{1}{1-x}$.
- 5. Use induction (See Appendix E) to prove the formula you found in #4.
- 6. Find a formula for the second derivative of the product f(x)g(x).

Section 3.9

7. Given $\mathbf{r}(t) = \langle f(t) \cos t, f(t) \sin t \rangle$ and a value t_0 such that $f'(t_0) = 0$ but $f(t_0) \neq 0$, show that the line tangent to $\mathbf{r}(t)$ at $t = t_0$ is perpendicular to the line from the origin to the point corresponding to $\mathbf{r}(t_0)$.

8. For the parametrized curves below, x'(t) = y'(t) = 0 when t = 0. Determine the slope of the tangent line by computing $\lim_{t\to 0} \frac{dy}{dx}$.

- a) $x = t^3 1, y = 2t^3$
- b) $x = t^5, y = t^3$