Fall 2004 MATH 171

Week in Review VI
courtesy of David J. Manuel

Section 3.7, 3.8, and 3.9

Section 3.7

1. Prove the "vector rule" for derivatives: If $\mathbf{r}(t)=<x(t), y(t)>$, then $\mathbf{r}^{\prime}(t)=<x^{\prime}(t), y^{\prime}(t)>$.
2. Prove that $\frac{d}{d t}(\mathbf{r}(t) \cdot \mathbf{s}(t))=\mathbf{r}(t) \cdot \mathbf{s}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{s}(t)$.
3. Given $\mathbf{r}(t)=<\cos t, \sin t>$, compute $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)$. What theorem does your result prove?

Section 3.8

4. Find a formula for the nth derivative of $f(x)=\frac{1}{1-x}$.
5. Use induction (See Appendix E) to prove the formula you found in \#4.
6. Find a formula for the second derivative of the product $f(x) g(x)$.

Section 3.9

7. Given $\mathbf{r}(t)=<f(t) \cos t, f(t) \sin t>$ and a value t_{0} such that $f^{\prime}\left(t_{0}\right)=0$ but $f\left(t_{0}\right) \neq 0$, show that the line tangent to $\mathbf{r}(t)$ at $t=t_{0}$ is perpendicular to the line from the origin to the point corresponding to $\mathbf{r}\left(t_{0}\right)$.
8. For the parametrized curves below, $x^{\prime}(t)=y^{\prime}(t)=0$ when $t=0$. Determine the slope of the tangent line by computing $\lim _{t \rightarrow 0} \frac{d y}{d x}$.
a) $x=t^{3}-1, y=2 t^{3}$
b) $x=t^{5}, y=t^{3}$
