Fall 2004 MATH 171

Week in Review VIII

courtesy of David J. Manuel
Section 4.4, 4.6, and 4.8

Section 4.4

1. Prove $\frac{d}{d x}(\ln x)=\frac{1}{x}$
2. Use logarithmic differentiation to differentiate $f(x) g(x)$ and show you obtain the product rule.
3. Prove that, if n is any real number, $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ (i.e., prove the power rule for any real exponent).

Section 4.6

4. Define the function $y=\cos ^{-1} x$. Compute $\cos ^{-1}\left(\cos \left(\frac{13 \pi}{12}\right)\right)$.
5. Prove $\frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}$
6. Show that $\sin ^{-1} x+\cos ^{-1} x$ is constant for all x. Find the constant.

Section 4.8

7. If $f(a)=g(a)=0, g^{\prime}(a) \neq 0$, and f^{\prime} and g^{\prime} are continuous at $x=a$, prove that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
8. Prove $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.
9. Prove that, if $p>0$, then $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}=0$. Explain what this result says about the graphs of $f(x)=\ln x$ and $g(x)=x^{p}$.
