Fall 2004 MATH 171

Week in Review IX
courtesy of David J. Manuel
Section 5.1, 5.2, and 5.3

Section 5.1

1. TRUE or FALSE? If f is increasing on (a, b) and increasing on (b, c), then f is increasing on (a, c). If true, prove it. If false, provide a counter-example.
2. Sketch 3 different-shaped graphs which are decreasing on $(-1,2)$. Explain what is different about each graph.
3. The graphs of a function, its first derivative, and its second derivative are shown below. Which graph is which? Explain your reasoning.

Section 5.2

4. Prove Fermat's Theorem: If f has a local maximum at $x=c$ and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
5. Sketch the graph of a function f on $[2,5]$ such that:
a) f has an absolute minimum but no local minimum.
b) f has a local minimum but no absolute minimum.

If either of these is not possible, explain why.

Section 5.3

6. Use the Mean Value Theorem to prove that, if $f^{\prime}<0$ on (a, b), then f is decreasing on (a, b).
7. In Section 2.5, you used the Intermediate Value Theorem to prove that an equation such as $x^{3}+3 x-7=0$ has a solution. Use the Mean Value Theorem to prove that this equation $\left(x^{3}+3 x-7=0\right)$ has ONLY one solution.
8. Show that, if two functions have the same derivative, then they differ at most by a constant. i.e., if $f^{\prime}(x)=g^{\prime}(x)$ for all x, then there is a constant C such that $f(x)=g(x)+C$.
