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Abstract—This note suggests some investigations about the
complexity of multivariate problems based on quantized
information rather than standard information. The extreme case
of binary information is studied on two classical examples: the
integration of multivariate Lipschitz functions, for which it is
shown that adaptivity of the quantization process is beneficial,
and the integration of multivariate trigonometric polynomials,
for which it is hinted that special binary information is superior
to standard binary information.

I. INTRODUCTION

An important question in compressive sensing pertains to
the minimal number of linear samples allowing for exact
reconstruction of sparse vectors. A similar concern is central
to the field of information-based complexity (IBC), except
that the objects to be reconstructed are not sparse vectors
but multivariate functions and that approximate reconstruction
instead of exact reconstruction is sought. Let us recall a
few key concepts from IBC relevant to this note. We refer
to the encyclopedic volumes [5] for full details. We use
the conventional IBC notation: d stands for the number of
variables, ε for the approximation accuracy, and n for the
number of samples. The generic task consists in approximating
a quantity of interest Q(f) with accuracy ε for all d-variate
functions f in a class F using the n pieces of information of
type Λ. To do so, one uses a rule R = Rn (ideally a practical
algorithm) taking λ1(f), . . . , λn(f) as inputs and returning
an approximant Rn(λ(f)) as output. The process may be
nonadaptive, i.e., the information functionals λj : F → R
are chosen once and for all, or it may be adaptive, i.e., the
information functionals depend on the information previously
acquired, so that λj = λj;{(λi,λi(f)),i<j}. The difficulty of the
task is assessed by the relationship between the required accu-
racy and the amount of information to gather. This relationship
is quantified through

eΛ
(non)ada(n, d)F := inf

Rn

{
sup
f∈F
|Q(f)−Rn(λ(f))|

}
,

where the infimum is taken over all possible (non)adaptative
rules Rn, or ‘equivalently’ through

nΛ
(non)ada(ε, d)F = inf{n: there is a (non)adaptive rule Rn:

|Q(f)−Rn(λ(f))| ≤ ε for all f ∈ F}.

The ‘equivalence’ alluded to above reflects the fact that,
loosely speaking, eΛ

(non)ada(·, d)F and nΛ
(non)ada(·, d)F are

inverse functions of one another. The major inquiry in

IBC asks whether the task at hand suffers from the
curse of dimensionality, meaning that nΛ

(non)ada(ε, d)F grows
exponentially with ε or d. This question is very well studied
for many different scenarios.

The effect of error in the samples is rather less studied
in IBC ([7] is the reference on the subject), whereas it
appears as a predominant theme in compressive sensing. In
fact, quantization of the samples has also been considered
in compressive sensing. Notably, the extreme quantization
scenario where each sample contains only one bit of
information was introduced in [1] and gained popularity
under the name of one-bit compressive sensing. The novel
contribution of this note consists in attaching this extreme
quantization scenario to IBC problems. More precisely, instead
of standard information of the form λi(f) = f(xi) for some
x1, . . . , xn ∈ Rd, we assume that we can only gather binary
information resulting from comparing the f(xi), or some of
their linear combinations, to some threshold yi. Thus, we only
have access to what we shall call standard binary information,
i.e.,

λi(f) = sgn(f(xi)− yi) =

{
+1 if f(xi) ≥ yi
−1 if f(xi) < yi

}
, (1)

or to what we shall call special binary information, i.e.,

λi(f) = sgn
(∑

j

ai,jf(xj)− yi
)
. (2)

It is also assumed that we have complete freedom in choosing
the parameters (xi, yi) or (xj , ai,j , yi).

The initial investigations presented in this note deal with
arguably the two most straightforward IBC problems, i.e.,
the integration of Lipschitz functions and of trigonometric
polynomials — these are the first two examples put forward
in [5, Volume 1]. In Section II, we consider the worst-
case integration error over a set of Lipschitz functions
observed via standard binary information, which we estimate
rather precisely in both the adaptive and nonadaptive case.
In contrast to several IBC results, adaptivity does help
here (adaptivity in the quatization process, that is). This is
reminiscent of the message of [2], which showed that, in
one-bit compressive sensing, adaptively selecting thresholds
allows the reconstruction error to decay exponentially with
the number of samples. In Section III, our results are not
as compelling, because upper bounds on the worst-case error
over a set of multivariate trigonometric polynomials are not
accompanied by matching lower bounds. Moreover, only the



nonadaptive case is considered. But we give upper bounds
(speculated to be sharp) for standard binary information
and for special binary information and we stress that the
latter is substantially smaller than the former. In Section IV,
we conclude by isolating some of the many questions left
unanswered by this initial work on quantization in IBC.

II. INTEGRATION OF LIPSCHITZ FUNCTIONS

We consider here the set of Lipschitz functions

L := Ld :=

{
f : [0, 1]d → R : sup

x∈[0,1]d
|f(x)| ≤ 1

2
,

sup
x6=x′∈[0,1]d

|f(x)− f(x′)|
‖x− x′‖∞

≤ 1

}
.

For standard information of the type λi(f) = f(xi), the
fundamental result of [8] states that, when n = md for some
integer m,

esta
ada(n, d)L = esta

nonada(n, d)L =
d

2(d+ 1)

(
1

n

)1/d

,

or equivalently, when ε = 1/(2(d+ 1)m) for some integer m,

nsta
ada(ε, d)L = nsta

nonada(ε, d)L =
1

2d(1 + 1/d)d

(
1

ε

)d
.

This exponential dependence in d makes the problem that uses
standard information intractable, hence the harder problem
that uses standard binary information is also intractable. We
are nonetheless interested in finding the exact order of the
worst-case integration errors est.bin

nonada(n, d)L and est.bin
ada (n, d)L

to show that adaptivity helps (ever so slightly).

Theorem 1. When n = md+1 for some integer m,

d

2(d+1)

(
1

n

) 1
d+1

≤ est.bin
nonada(n, d)L ≤

2d+1

2(d+1)

(
1

n

) 1
d+1

, (3)

and when n = 3md, say, for some integer m,

est.bin
ada (n, d)L ≤

2d+ 1

2(d+ 1)

(
3

n

) 1
d

. (4)

Proof. We start by proving the most significant result, i.e., the
lower bound in (3). With n = md+1, we want to prove that, for
any z1 := (x1, y1), . . . , zn := (xn, yn) ∈ [0, 1]d× [−1/2, 1/2]
and for any map Rn : Rn → R,

σ := sup
f∈L

∣∣∣∣∣
∫

[0,1]d
f −Rn(λ(f))

∣∣∣∣∣ ≥ d

2(d+ 1)

1

m
,

where λ(f) = [λ1(f), . . . , λn(f)] denotes some standard
binary information of type (1). So given such points z1, . . . , zn
in [0, 1]d × [−1/2, 1/2], there is a ‘horizontal’ strip [0, 1]d ×
[y−1/(2m), y+1/(2m)] containing k ≤ n/m = md of these
points, say, zi1 , . . . , zik . Let us now define a distance on [0, 1]d

by dist(x, x′) = min{‖x− x′‖∞, 1/(2m)} and in turn let us
define two functions f− and f+ by

f±(x) := y ± dist(x, {xi1 , . . . , xik}), x ∈ [0, 1]d.

Note that f− and f+ are Lipschitz functions with constant one
satisfying f±(x) ∈ [y − 1/(2m), y + 1/(2m)] ⊆ [−1/2, 1/2]
for all x ∈ [0, 1]d. Thus, both f− and f+ belong to L.
Furthermore, note that sgn(f−(xi)− yi) = sgn(f+(xi)− yi)
for all i ∈ J1 : nK (separate the cases i ∈ {i1, . . . , ik} and
i 6∈ {i1, . . . , ik}), that is to say λ(f−) = λ(f+). Therefore,

σ ≥ 1

2

∣∣∣∣∣
∫

[0,1]d
f+−Rn(λ(f+))

∣∣∣∣∣+
1

2

∣∣∣∣∣
∫

[0,1]d
f−−Rn(λ(f−))

∣∣∣∣∣
≥ 1

2

∫
[0,1]d

(f+ − f−) =

∫
[0,1]d

dist(·, {xi1 , . . . , xik}) =: σ′.

We estimate the latter integral as follows:

σ′ =

∫ ∞
0

∣∣{x ∈ [0, 1]d : dist(x, {xi1 , . . . , xik}) > t}
∣∣ dt

=

∫ 1
2m

0

(
1−

∣∣∪kj=1{x ∈ [0, 1]d : ‖x− xij‖∞ ≤ t}
∣∣) dt

≥ 1

2m
− k

∫ 1
2m

0

(2t)ddt =
1

2m
− k

2(d+ 1)md+1

≥ d

2(d+ 1)

1

m
.

This immediately implies the desired lower bound on σ.
Let us now turn to the upper bound in (3). Consider the

md grid points indexed by i = (i1, . . . , id) ∈ J1 : mKd and
defined by

xi =

(
i1 − 1/2

m
, . . . ,

id − 1/2

m

)
∈ [0, 1]d. (5)

Given f ∈ L, by comparing f(xi) for each i ∈ J1 : mKd to

y1 = −1

2
+

1

2m
, y2 = −1

2
+

3

2m
, . . . ,

ym = −1

2
+

2m− 1

2m
=

1

2
− 1

2m
, (6)

i.e., by taking the m binary samples λi,j(f) = sgn(f(xi)−yj),
j ∈ J1 : mK, we can approximate f(xi) by some fi ∈ R in
such a way that |f(xi)−fi| ≤ 1/(2m). In total, we are taking
md×m = n standard binary samples. The rule for integrating
f ∈ L from these binary samples consists in outputting

Rn(λ(f)) :=
1

md

∑
i∈J1:mKd

fi. (7)

The integration error then satisfies∣∣∣∣∣
∫

[0,1]d
f −Rn(λ(f))

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫

[0,1]d
f − 1

md

∑
i∈J1:mKd

f(xi)

∣∣∣∣∣∣
+

1

md

∑
i∈J1:mKd

|f(xi)− fi|

≤ d

2(d+ 1)

1

m
+

1

2m

=
2d+ 1

2(d+ 1)

1

m
, (8)



where the last inequality made use of the result of [8] for
the integration of f ∈ L based on standard information. This
yields the desired upper bound.

Our last task is to establish the upper bound (4). To do
so, we consider the same grid points xi, i ∈ J1 : mKd, as
in (5) and the same thresholds yj , j ∈ J1 : mK, as in (6).
Given f ∈ L, for each mutliindex i = (i1, . . . , id−1, 1)
whose last entry is fixed, we can again approximate f(xi)
by some fi ∈ R with accuracy 1/(2m) from the m standard
binary samples λi,j(f) = sgn(f(xi) − yj), j ∈ J1 : mK.
Then we can propagate the approximation in the (0, . . . , 0, 1)-
direction using the Lipschitz condition. Indeed, suppose that
f(x(i1,...,id−1,h)) is approximated with accuracy 1/(2m), i.e.,
we know that it belongs to some [yj , yj+1]. In view of

|f(x(i1,...,id−1,h+1))− f(x(i1,...,id−1,h))| ≤ 1/m,

we know that f(x(i1,...,id−1,h+1)) belongs to [yj−1, yj+2].
With the two standard binary samples

sgn(f(x(i1,...,id−1,h+1))−yj), sgn(f(x(i1,...,id−1,h+1))−yj+1),

we can locate f(x(i1,...,id−1,h+1)) in [yj−1, yj ], [yj , yj+1], or
[yj+1, yj+2], hence approximate if with accuracy 1/(2m).
Thus, the f(x(i1,...,id−1,h)), h ∈ J1 : mK, can be approximated
from m + 2(m − 1) ≤ 3m standard binary samples. In total,
all the f(xi) can be approximated by some fi with accuracy
1/(2m) using at most md−1× 3m = n binary measurements.
With the same integration rule as in (7), we derive in exactly
the same way as (8) that∣∣∣∣∣

∫
[0,1]d

f −Rn(λ(f))

∣∣∣∣∣ ≤ 2d+ 1

2(d+ 1)

1

m
,

which is precisely the required upper bound. Note that the
adaptive quantization procedure is improvable in the sense
that we can certainly approximate all the f(xi) with accuracy
1/(2m) with less than 3md standard binary samples (e.g. 2md)
but that the extra effort was unnecessary here.

Remark. The integration rules yielding the upper bounds
in (3) and (4) rely on the production of grid points and
thresholds (see (5) and (6)) that can only be carried out from
the knowledge that f ∈ L. Ideally, we would prefer procedures
that do not exploit an a priori knowledge of the function class,
but that supply better error bounds when the functions happen
to belong to specific classes.

III. INTEGRATION OF TRIGONOMETRIC POLYNOMIALS

We consider here the tensor-product space of trigonometric
polynomials of degree at most one, i.e.,

T := Td :=

d⊗
`=1

span{1, cos(2πx`), sin(2πx`)}

=:

d⊗
`=1

span{e1(x`), e2(x`), e3(x`)},

equipped with the Euclidean norm that makes the system
{x ∈ [0, 1]d 7→

∏d
`=1 ei`(x`), i1, . . . , id ∈ {1, 2, 3}} into an

orthonormal basis. The space T is then a reproducing kernel
Hilbert space with kernel given by

K(x, x′) :=

d∏
`=1

(1 + cos(2π(x` − x′`))) , x, x′ ∈ [0, 1]d.

We are interested in the worst-case integration error over the
unit ball of T based on binary information. We shall only be
looking at the nonadaptive case and the estimates we shall
prove lack lower bounds, but we point out that, even for
standard information, the optimal worst-case integration error
is not known with certainty. However, it is believed that

esta
ada(n, d)T = esta

nonada(n, d)T = max
{

0, 1− n

2d

}
,

see Open Problem 3 in [5, Volume 1]. These inequalities
do hold when the number n of standard samples equals 2d,
because the equal-weight quadrature formula relative to the
points {ξ1, . . . , ξ2d} := {0, 1/2}d is exact on T . Thus, the
integration rule

Rn(f1, . . . , f2d) =
1

2d

2d∑
i=1

fi

relying on approximations fi of f(ξi) obtained from n binary
samples yields the worst-case integration error

e(Rn) = sup
f∈T
‖f‖≤1

∣∣∣∣ ∫
[0,1]d

f −Rn(f1, . . . , f2d)

∣∣∣∣
= sup

f∈T
‖f‖≤1

1

2d

∣∣∣∣ 2d∑
i=1

(f(ξi)−fi)
∣∣∣∣ ≤ sup

f∈T
‖f‖≤1

1

2d

2d∑
i=1

|f(ξi)−fi| . (9)

This leads to the task of approximating 2−d[f(ξ1), . . . , f(ξ2d)]
in `1-norm from binary information.1 The proposition below
hints that the strategy of quantizing each f(ξi) separately may
not be optimal.

Proposition 1. The optimal worst-case `1-approximation
errors of 2−d[f(ξ1), . . . , f(ξ2d)] over the unit ball of T satisfy

est.bin
nonada(n, d)BT ≤

23d/2

n
, (10)

esp.bin
nonada(n, d)BT .

(
d

n

)1/2

, (11)

in the cases of standard and of special binary information,
respectively. It follows that

nst.bin
nonada(ε, d)BT ≤ ε−123d/2, nsp.bin

nonada(ε, d)BT . ε−2d.

The latter improves upon the former in the high-dimensional
regime d & ln(1/ε).

Proof. Given f ∈ T with ‖f‖ ≤ 1, we start by noticing that

|f(x)| = |〈f,K(·, x)〉| ≤ ‖f‖‖K(·, x)‖ ≤ 1× 2d/2

for any x ∈ [0, 1]d, where the last inequality resulted from

‖K(·, x)‖2 = 〈K(·, x),K(·, x)〉 = K(x, x) = 2d.

1For the original integration problem, special binary information of type (2)
is too powerful, since it includes information of the type sgn

( ∫
[0,1]d f−yi

)
.



Therefore, as in the proof of Theorem 1, we can approximate
each f(ξi) for a fixed i ∈ J1 : 2dK by some fi ∈ R
with accuracy ε = 2d/2/m by taking m binary samples of
the type sgn(f(ξi) − yj), j ∈ J1 : mK. The total number
of standard binary samples to approximate f(ξ1), . . . , f(ξ2d)
simultaneously with accuracy ε is then n = 2dm. We derive
that the quantity in (9) satisfies

sup
f∈T
‖f‖≤1

1

2d

2d∑
i=1

|f(ξi)− fi| ≤ ε =
2d/2

m
=

23d/2

n
.

This proves the estimate (10).
To prove the estimate (11), we introduce the set

S :=

{
1

2d/2
[f(ξ1), . . . , f(ξ2d)] : f ∈ T , ‖f‖ ≤ 1

}
⊆ R2d

.

We claim that elements of S have `2-norm bounded by one.
Indeed, given f ∈ T with ‖f‖ ≤ 1, we remark that

2d∑
i=1

f(ξi)
2 =

2d∑
i=1

f(ξi)〈f,K(·, ξi)〉

= 〈f,
2d∑
i=1

f(ξi)K(·, ξi)〉

≤
∥∥∥∥ 2d∑
i=1

f(ξi)K(·, ξi)
∥∥∥∥. (12)

Next, in view of∥∥∥∥ 2d∑
i=1

f(ξi)K(·, ξi)
∥∥∥∥2

=

2d∑
i,j=1

f(ξi)f(ξj)〈K(·, ξi),K(·, ξj)〉

=

2d∑
i,j=1

f(ξi)f(ξj)K(ξi, ξj)

and the facts that K(ξi, ξi) = 2d and K(ξi, ξj) = 0 for i 6= j,
we obtain∥∥∥∥ 2d∑

i=1

f(ξi)K(·, ξi)
∥∥∥∥ = 2d/2

 2d∑
i=1

f(ξi)
2

1/2

. (13)

Putting (12) and (13) together gives the `2-norm estimate
‖[f(ξ1), . . . , f(ξ2d)]‖2 ≤ 2d/2, which confirms our claim.
We also point out that the set S is embedded in a linear
space of dimension ≤ 3d, since T itself has dimension = 3d.
Therefore, the mean width of S satisfies (see e.g. [6])

w(S) ≤
√

3d.

Therefore, we know (from probabilistic arguments, see e.g. [4,
Theorem 2.2]2) that there exist ai,j , i ∈ J1 : nK, j ∈ J1 : 2dK,
such that nonadaptive special binary information of type (2)
allows any element of S to be approximated in `2-norm with

2Strictly speaking, the theorem applies only to a subset of the unit sphere,
not to a subset of the unit ball, but the lifting trick presented in [3, Section 4]
takes care of a full explanation.

accuracy δ provided that n & δ−2w(S)2, hence as soon as
n � δ−2 d. This means that, for each f ∈ T with ‖f‖ ≤ 1,
the vector v = [f(ξ1), . . . , f(ξ2d)] ∈ R2d

can be approximated
by a vector v] = [f1, . . . , f2d ] ∈ R2d

with ‖v− v]‖2 ≤ 2d/2δ.
In turn, we derive that

1

2d

2d∑
i=1

|f(ξi)− fi| ≤
1

2d
‖v − v]‖1 ≤

1

2d/2
‖v − v]‖2

≤ δ �
(
d

n

)1/2

,

which yields the estimate (11) on the quantity in (9).

IV. PERSPECTIVES

We have initiated a study of the complexity of multivariate
problems based on binary information by considering two
rather simple problems (for which we did not even give a
complete picture). There are countless other IBC problems that
had been investigated in the context of standard information
and that could be revisited in this novel context. In particular,
it would be intriguing to uncover a situation where a problem
is intractable based on nonadaptive binary information but
for which adaptivity would enable tractability. This search
should be preceded by a serious discussion of what tractability
should mean now. Indeed, since acquiring a binary sample
is so much cheaper than acquiring a standard sample, the
numbers of samples of both kinds cannot be placed on an
equal footing, so one should wonder if it is still pertinent
to declare a d-variate problem (polynomially) tractable under
the condition that the number of binary samples to achieve
accuracy ε depends polynomially on ε−1 and d. Finally, binary
information sets the scene for neat mathematical problems, but
the one-bit quantization attached to it may be regarded as a toy
process. In practice, more sophisticated quantization processes
are used and ideally the complexity of multivariate problems
should be examined in the context of the quantized information
resulting from these processes.
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