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Chapter 1

Introductory remarks

1.1 Taylor series and ‘big-O’ notations

Let us strart by recalling Taylor’s theorem.

Theorem 1.1. If the function f possesses continuous derivatives of order 0, 1, . . . , n+ 1 on
a closed interval I = [a, b], then for any x, x0 ∈ I,

f(x) =
n∑

k=0

f (k)(x0)
k!

(x− x0)k + En+1,

where the error term , or remainder, En+1 [which also depends on x and x0] can be
represented by

En+1 =


∫ x

x0

f (n+1)(t)
n!

(x− t)ndt,

f (n+1)(c)
(n+ 1)!

(x− x0)n+1, for some c between x and x0.

Note that taking n = 0 together with the second form of the remainder yields the mean
value theorem, itself implying Rolle’s theorem. Let us write x = x0 + h. Suppose for

example that
f (n+1)(c)
(n+ 1)!

can be bounded by some constant K, then one has |En+1| ≤ K|h|n+1,

which is abbreviated by the ‘big-O’ notation

En+1 = O(hn+1).

It means that, as h converges to zero, En+1 converges to zero with (at least) essentially
the same rapidity as |h|n+1. In such circumstances, we have at hand a way to compute
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(approximately) the value of f(x): take the Taylor polynomial of degree n for f centered
at x0 and evaluate it at x. But beware that, when n grows, a Taylor series converges
rapidly near the point of expansion but slowly (or not at all) at more remote points. For
example, the Taylor series for ln(1 + x) truncated to eight terms gives

ln 2 ≈ 1− 1
2

+
1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
= 0.63452...,

a rather poor approximation to ln 2 = 0.693147..., while the Taylor series for ln
(

1 + x

1− x

)
truncated to four terms gives

ln 2 = 2
[
1
3

+
1

33 · 3
+

1
35 · 5

+
1

37 · 7

]
= 0.69313...

As another example, consider the Taylor series of the exponential function centered at 0,
that is

ex =
∞∑

k=0

xk

k!
.

Even though the remainder, for a given x, is of the type O(1/n!), the determination of ex via
the Taylor series truncated to seven terms is quite bad for x = 8. However, when x = 1/2

this produces very good results, as compared e.g. to the approximation e1/2 ≈
(

1 +
1
2n

)n

,

at least when speed of convergence is concerned. But is this the only criterion that
matters? It seems that less operations are required to compute the latter...

1.2 Evaluating a polynomial

Given coefficients a0, . . . , an, we wonder how one should evaluate the polynomial p(x) :=
an + an−1x + · · · + a0x

n efficiently at a given point x. The first instinct is to calculate the
terms an−i×x× x× · · · × x︸ ︷︷ ︸

i times

for each i ∈ J0, nK and to sum them all. This requires n additions

and 1+2+ · · ·+n =
n(n+ 1)

2
multiplications. Obviously, we have done too much work here

since we have not used the result of the computaion of xi to evaluate xi+1. If we do, the
calculation of the powers of the input number x only requires n− 1 multiplications. Hence
the whole process now requires n additions and 2n−1 multiplications. This is much better,
but can still be improved via Horner’s method, also called nested multiplication. It is
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based on a simple observation, namely

p(x) = an + an−1x+ · · ·+ a0x
n

= an + x(an−1 + an−2x+ · · ·+ a0x
n−1)

= · · · = an + x(an−1 + x(an−2 + · · ·+ x(a1 + xa0) · · · )).

This calls for the following piece of pseudocode:
p←a0

for i = 1 to n
do p← ai + x ∗ p end do

Here we notice that one addition and one multiplication are required at each step, hence
the cost of the whole algorithm is n additions and n multiplications. This implies that the
execution time is roughly divided by a factor 2.

1.3 Exercises

From the textbook: 8 p 14, 18 p 15.

1. What is the Taylor series for ln(1 + x)? for ln((1 + x)/(1− x))?

2. Verify the Taylor series

ln(x+ e) = 1 +
x

e
− x2

2e2
+ · · ·+ (−1)k−1

k

(x
e

)k
+ · · ·

3. Rewrite the following polynomials in nested form and evaluate at x = −1/2:

• p(x) = 6x3 − 2x2 − 3x+ 7

• p(x) = 8x5 − x4 − 3x3 + x2 − 3x+ 1

4. Show how to evaluate the following polynomials efficiently:

• p(x) = x32

• p(x) = 3(x− 1)5 + 7(x− 1)9

• p(x) = 6(x+ 2)3 + 9(x+ 2)7 + 3(x+ 2)15 − (x+ 2)31

• p(x) = x127 − x37 + 10x17 − 3x7
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5. Using a computer algebra system (Maple, Mathematica,...), print 200 decimal digits of√
10.

6. Express in mathematical notation without parentheses the final value of z in the follow-
ing pseudocode:
input n, (bi), z
z ← bn + 1
for k = 1 to n− 2

do z ← z ∗ bn−k + 1 end do

7. How many multiplications occur in executing the following pseudocode?
input n, (ai,j), (bi,j), x
for j = 1 to n do

for i = 1 to j do
x← x+ ai,j ∗ bi,j

end do
end do

8. For the pair (xn, αn), is it true that xn = O(αn) as n→∞?

• xn = 5n2 + 9n3 + 1, αn = n2

• xn =
√
n+ 3, αn = 1/n

Optional problems

1. Prove that the series of Exercise 2 converges on the interval −e < x ≤ e.

2. Prove that if f possesses continous derivatives of order 0, 1, . . . , n and if f(x0) = f(x1) =
· · · = f(xn) for x0 < x1 < · · · < xn, then f (n)(c) = 0 for some c ∈ (x0, xn).

From the textbook: 25 p 16.
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Chapter 2

Programming suggestions

You may use any software you are comfortable with, however I will use pseudocode as the
‘programming language’ throughout the notes. This is only loosely defined, nevertheless,
as a bridge between mathematics and computer programming, it serves our purpose well.
The course does not focus on programming, but on understanding and testing the various
numerical methods underlying scientific computing. Still, some words of advice can do no
harm. The following suggestions are not intended to be complete and should be considered
in context. I just want to highlight some consideration of efficiency, economy, readability,
and roundoff errors.

2.1 Programming and coding advice

Use pseudocode before beginning the coding. It should contain sufficient detail so
that the implementation is straightforward. It should also be easily read and understood
by a person unfamiliar with the code.

Check and double check. It is common to write programs that may work on simple
test but not on more complicated ones. Spend time checking the code before running it to
avoid executing the program, showing the output, discovering an error, and repeating the
process again and again.

Use test cases. Check and trace through the pseudocode using pencil-and-paper calcula-
tions. These sample tests can then be used as test cases on the computer.
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Modularize code. Build a program in steps by writing and testing a series of self-
contained subtasks (subprograms, procedures, or functions) as separate routines. It makes
reading and debugging easier.

Generalize slightly. It is worth the extra effort to write the code to handle a slightly more
general situation. For example, only a few additional statements are required to write a
program with an arbitrary step size compared with a program in which the step size is
fixed numerically. However, be careful not to introduce too much generality because it can
make a simple task overly complicated.

Show intermediate results. Print out or display intermediate results and diagnostic
messages to assist in debugging and understanding the program’s operation. Unless im-
practical to do so, echo-print the input data.

Include warning messages. A robust program always warns the user of a situation that
it is not designed to handle.

Use meaningful variable names. This is often helpful because they have greater mnemonic
value than single-letter variables.

Declare all variables. All variables should be listed in type declarations in each program
or program segment.

Include comments. Comments within a routine are helpful for recalling at some later
time what the program does. It is recommended to include a preface to each program or
program segment explaining the purpose, the input and output variable, etc. Provide a few
comments between the major segments of the code; indent each block of code a consistent
number of spaces; insert blank comment lines and blank spaces – it greatly improves the
readability.

Use clean loops. Do not put unnecessary statements within loops: move expressions and
variables outside a loop from inside a loop if they do not depend on it. Indenting loops,
particularly for nested loops, can add to the readability of the code.

Use appropriate data structure.

Use built-in functions. In scientific programming languages, functions such as sin, ln,
exp, arcsin are available. Numeric functions such as integer, real, complex are also usually
available for type conversion. One should use these as much as possible. Some of these
intrinsic functions accept arguments of more that one type and return an output of the
corresponding type. They are called generic functions, for they represent an entire family
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of related functions.

Use program libraries. In preference to one you might write yourself, a routine from a
program library should be used: such routines are usually state-of-the-art software, well
tested and completely debugged.

Do not overoptimize. The primary concern is to write readable code that correctly com-
putes the desired results. Tricks of the trade to make your code run faster and more
efficiently are to be saved for later use in your programming career.

2.2 Case studies

Computing sums. When a long list of floating-point numbers is added, there will gener-
ally be less roundoff error if the numbers are added in order of increasing magnitude.

Mathematical constants. In many programming languages, the computer does not auto-
matically know the values of common mathematical constants such as π or e. As it is easy
to mistype a long sequence of digits, it is better to use simple calculations involving math-
ematical functions, e.g π ← 4.0 arctan(1.0). Problems will also occur if one uses a short
approximation such as π ← 3.14159 on a computer with limited precision approximation
and than later moves the code to another computer.

Exponents. The function xy is generally computed as exp(y lnx) if y is not an integer.
Hence use preferentially the exponent 5 instead of 5.0; the exponents 1/2 or 0.5 are not
recommended since one can use the built-in function sqrt instead.

Avoid mixed mode. Mixed expressions are formulas in which variables and constants of
different types appear together. Use the intrinsic type conversion functions. For example,
1/m should be coded as 1.0/real(m).

Precision. In the usual mode, i.e. single precision, one word of storage is used for each
number. With double precision (also called extended precision), each number is allotted
two or more words of storage. This is more time consuming, but is to be used when more
accuracy is needed. In particular, on computers with limited precision, roundoff errors can
quickly accumulate in long computations and reduce the accuracy to only three or four
decimal places.

Memory fetches. When using loops, write the code so that fetches are made from adjacent
words in memory. Suppose you want to store values in a two-dimensional array (ai,j) in
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which the elements of each column are stored in consecutive memory locations, you would
then use i and j loops with the i loop as the innermost one to process elements down the
columns.

When to avoid arrays. Although a sequence of values is computed, it is often possible
to avoid arrays. For example, Newton’s method (to be studied later) involves the recursion
xn+1 = xn − f(xn)/f ′(xn), but we are only interested in the final value of xn, hence we can
replace at each step an old x with the new numerical value x− f(x)/f ′(x). In other words,
the pseudocode
for n = 1 to 10 do x← x− f(x)/f ′(x) end do
will produce the result of ten iterations.

Limit iterations. To avoid endless cycling, limit the number of permissible steps by the
use of a loop with a control variable. Hence, instead of

input x, d
d← f(x)/f ′(x)
while |d| > ε

do x← x− d, output x, d← f(x)/f ′(x) end do

it is better to write

for n = 1 to nmax

do d← f(x)/f ′(x), x← x− d, output n, x,
if |d| > ε then exit loop end if
end do

Floating-point equality. The sequence of steps in a routine should not depend on whether
two floating-point numbers are equal. Instead, reasonable tolerance should be permitted.
Thus write
if |x− y| < ε then ...
or even better
if |x− y| < εmax(|x|, |y|) then ...

Equal floating-point steps. In some situations, a variable t assumes a succession of
values equally spaced a distance h apart along a real line. One way of coding this is
t← t0, for i = 1 to n do t← t+ h end do
Another way would be
for i = 0 to n do t← t0 + real(i) ∗ h end do
What is best depends on the situation at hand. In the first pseudocode, n additions occur,
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each with a possible round of error. In the second, this is avoided at an added cost of n
multiplications.

2.3 Exercises

1. The numbers pn =
∫ 1

0
xnexdx satisfy the inequalities p1 > p2 > p3 > · · · > 0. Establish

this fact. Using integration by parts, show that pn+1 = e − (n + 1)pn and that p1 = 1.
Use the recurrence relation to generate the first twenty values of pn on a computer and
explain why the inequalities above are violated.

2. The following pieces of code are supposedly equivalent, with α ↔ ε. Do they both pro-
duce endless cycles? Implement them on a computer [be sure to know how to abort a
computation before starting].

input α
α← 2
while α > 1 do α← (α+ 1)/2 end do

input ε
ε← 1
while ε > 0 do ε← ε/2 end do

18



Chapter 3

Non-decimal bases

3.1 Base-β numbers

Computers usually use base-2, base-8 or base-16 arithmetic, instead of the familiar base-10
arithmetic – which is not more natural than any other system, by the way, we are just
more used to it. Our purpose here is to discuss the relations between the representations
in different bases. First of all, observe for example that 3781.725 represents, in base 10, the
number

3× 103 + 7× 102 + 8× 10 + 1 + 7× 10−1 + 2× 10−2 + 5× 10−3.

More generally, in base β, we would write

(anan−1 · · · a1a0 . b1b2b3 · · · )β =
n∑

k=0

akβ
k +

∞∑
k=1

bkβ
−k,

where the ai’s and bi’s are to be chosen among the digits 0, 1, . . . , β − 1. The first sum
in this expansion is called the integer part and the second sum is called the fractional
part. The separator is called the radix point – decimal point being reserved for base-10
numbers. The systems using base 2, base 8, and base 16 are called binary, octal, and
hexadecimal, respectively. In the latter, the digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f .
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3.2 Conversions

Let us convert N = (101101001)2 to decimal form. We write

N = 1× 28 + 0× 27 + 1× 26 + 1× 25 + 0× 24 + 1× 23 + 0× 22 + 0× 2 + 1.

Then we perform the calculation in base-10 arithmetic, thus

N = 256 + 64 + 32 + 8 + 1 = 361.

To convert (N)α to base β, the same procedure [expand in powers of α and carry out the
arithmetic in base-β] can be used for any α and β, except that base-β arithmetic is tedious
for β 6= 10. In fact, when α > β, another technique is preferred.

Suppose for example that we want to find the binary representation of a number x, e.g.
x = (3781.725)10. Let us write

x = (anan−1 · · · a1a0 . b1b2b3 · · · )2.

The digit a0 is easy to find: it is the remainder in the division by 2 of the integer part of x.
Now, what about the digits a1 and b1? Well, we notice that

x/2 = anan−1 · · · a1 . a0b1b2b3 · · ·

2x = anan−1 · · · a1a0b1 . b2b3 · · · ,

so that a1 and b1 are obtained from the previous observation applied to x/2 and 2x. The
process can be continued. It yields an algorithm for the conversion of the integer part an
another one for the conversion of the fractional part.

Integer part: Divide successively by 2 and store the remainder of the division as a digit
until hitting a quotient equal to zero.

3781 → 1890; 1→ 945; 01→ 472; 101→ 236; 0101→ 118; 00101→ 59; 000101→ 29; 1000101

→ 14; 11000101→ 7; 011000101→ 3; 1011000101→ 1; 11011000101→ 0; 111011000101.

In conclusion, we have obtained (3781)10 = (111011000101)2.

Fractional part: Multiply by 2, store the integer part as a digit and start again with the
new fractional part. Remark that the process might not stop.
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0.725 → 1; 0.45→ 10; 0.9→ 101; 0.8

→ 1011; 0.6→ 10111; 0.2→ 101110; 0.4→ 1011100; 0.8

→ repeat the previous line.

In conclusion, we have obtained (0.725)10 = (0.101 1100 1100 1100 · · · )2.

3.3 Conversion 2↔ 8↔ 16

The octal system is useful as an intermediate step when converting between decimal and
binary systems by hand. The conversion 10 ↔ 8 proceeds according to the previous prin-
ciples, and the conversion 8 ↔ 2 handles groups of three binary digits according to the
table

Octal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Hence, the previous example gives

3781→ 472; 5→ 59; 05;→ 7; 305→ 0; 7305,

so that (3781)10 = (7305)8 = (111 011 000 101)2.

Most computers use the binary system for their internal representation. On computers
whose word lengths are multiples of four, the hexadecimal system is used. Conversion
between these two systems is also very simple, in view of the table

1 2 3 4 5 6 7 8 9 a b c d e f

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

3.4 Exercises

1. Convert (110111001.101011101)2 and (1001110101.01101)2 to hexadecimal, to octal, and
then to decimal.

2. Convert the following numbers and then convert the results back to the original bases:
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(a) (47)10 = ( )8 = ( )2

(b) (0.782)10 = ( )8 = ( )2

(c) (110011.1110101101101)2 = ( )8 = ( )10

(d) (361.4)8 = ( )2 = ( )10

3. Prove that a number has a finite binary representation if it has the form ±m/2n, where
m and n are non-negative integers. Prove that any number having a finite binary rep-
resentation also has a finite decimal representation.

4. Find the first twelve digits in the octal representation of eπ/4. Use built-in mathemati-
cal functions to obtain the values of e and π.

5. With the help of a computer, establish that the number eπ
√

163 is very close to an 18-
digits decimal integer and convert this integer to base 16. How many times is this
integer dividable by 2?

Optional problems

1. Convert [by hand] the decimal number 4225.324 to base 7.

2. Write and test a routine for converting base-3 integers to binary integers.
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Chapter 4

Computer arithmetic

4.1 Floating-point representation

Consider a computer that stores numbers in 64-bit words. Then a single-precision num-
ber is represented by three different parts: first, 1 bit is allotted to the sign, then 11 bits
are allotted to an exponent c, called the characteristic, and finally 52 bits are allotted to
a fractional part f , called the mantissa. More precisely, these numbers have the form

(−1)s × 2c−1023 × (1 + f).

Since c is represented by 11 binary digits, it belongs to the integer interval J0, 211 − 1K =
J0, 2047K, and the range for the exponent c − 1023 is J−1023, 1024K. As for f , it lies in the
interval [0, 1 − (1/2)52]. Therefore, the smallest and largest positive machine numbers
are 2−1022×(1+0) and 21023×(2−(1/2)52). Outside this range, we say that an underflow or
an overflow has occured. The latter causes the computation to stop, the former produces
zero [which is represented by c = 0, f = 0 and s = 0 or s = 1].

4.2 Computer errors

If a number has the form x = (−1)s×2c−1023×1.d1d2 · · · d52d53 · · · , with c ∈ J−1023, 1024K, the
process of replacing it by the number xc := (−1)s× 2c−1023× 1.d1 · · · d52 is called chopping,
while the process of replacing it by the nearest machine number xr is called rounding.
The error involved is called the roundoff error. For the chopping process, the relative

23



error – not to be confused with the absolute error |x− xc| – satisfies

|x− xc|
|x|

=
2c−1023 × 0.0 · · · 0d53d54 · · ·

2c−1023 × 1.d1d2 · · ·
= 2−52 × 0.d53d54 · · ·

1.d1d2 · · ·
≤ 2−52 × 1

1
= 2−52.

The number ε := 2−52 is called the unit roundoff error. For the rounding process, we
would obtain the better bound on the relative error

|x− xr|
|x|

≤ ε

2
.

The value of the unit roundoff error, also known as machine epsilon, varies with the
computer [it depends on the word length, the arithmetic base used, the rounding method
employed]. As the smallest positive number ε such that 1 + ε 6= 1 in the machine, it can be
computed according to the following pseudocode:

input s, t
s← 1., t← 1.+ s

while t > 1 do s← s/2., t← 1 + s end do
output 2s

Even though it can be sensible to assume that the relative error in any single basic arith-
metic operation is bounded by the machine epsilon, the accumulation of these errors can
have some significant effect. Consider the sequence (pn) defined by p1 = 1 and pn+1 = e −
(n+1)pn [cf exercise 2.3.1], and let (p̃n) be the computed sequence. The error δn := |pn− p̃n|
obeys the rule δn+1 ≈ (n + 1)δn [of course, this is not an equality], so that δn ≈ n! δ1 blows
out of proportion. When small errors made at some stage are magnified in subsequent
stages, like here, we say that a numerical process is unstable.

4.3 Loss of significance

A large relative error can occur as a result of a single operation, one of the principal causes
being the subtraction of nearly equal numbers. As a straightforward example, suppose
we subtract, on a hypothetical 5-decimal-digit computer, the numbers x = 1.234512345 and
y = 1.2344. The difference should be x− y = 0.000112345, but the computer stores the value
(x − y)s = 0.0001. Almost all significant digits have been lost, and the relative error is
large, precisely

|(x− y)− (x− y)s|
|x− y|

=
1.2345× 10−5

1.12345× 10−4
≈ 11%.
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Contrary to the roundoff errors which are inevitable, these sort of errors can be kept under
control and the programmer must be alert to such situations. The simplest remedy is
to carry out part of a computation in double-precision arithmetic, but this is costly and
might not even help. A slight change in the formulas is often the answer. The assignment
y ←

√
1 + x2 − 1 involves loss of significance for small x, but the difficulty can be avoided

by writing y ← x2

√
1 + x2 + 1

instead [apply this to the solutions of a quadratic equation].

Likewise, the assignment y ← cos2 x − sin2 x involves loss of significance near π/4. The
assignment y ← cos(2x) should be used instead.

For completeness, we give a quantitative answer to the question: ‘exactly how many sig-
nificant binary bits are lost in the subtraction x− y when x is close to y?’.

Theorem 4.1 (Loss of precision). If two binary machine numbers x and y, with x > y > 0,
satisfy 2−q ≤ 1− y/x ≤ 2−p for some positive integers p and q, then at most q and at least p
significant binary digits are lost in the subtraction x− y.

4.4 Exercises

From the textbook: 1.h p 26, 4 p 26, 15.a.b. p 27, 24 p 28.

1. There will be subtractive cancellation in computing 1 + cosx for some values of x. What
are these values and how can the loss of precision be averted?

2. Show by an example that in computer arithmetic (x× y)× z may differ from x× (y× z).

3. Write and execute a program to compute 5−
√

25 + x2 and x2/(5 +
√

25 + x2) for x from
1 downto 0 with steps 0.01. Which results are reliable?

Optional problems

From the textbook: 25 p 29.

1. The inverse hyperbolic sine is given by f(x) = ln(x +
√
x2 + 1). Show how to avoid loss

of significance in computing f(x) when x is negative. Hint: exploit a relation between
f(−x) and f(x).
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Chapter 5

Linear algebra review

5.1 All you need to know

For a linear map f : V −→W , the kernel and the image of f are defined by

Kerf = {x ∈ V : f(x) = 0}, this is a linear subspace of V,

Imf = {f(x), x ∈ V }, this is a linear subspace of W.

From the equivalences [f injective] ⇐⇒ [Kerf = {0}] and [f surjective] ⇐⇒ [Imf = W ],
one derives

[f invertible] ⇐⇒ [Kerf = {0} and Imf = W ].

Using the rank-nullity theorem, reading

dim Imf︸ ︷︷ ︸
rank

+dim Kerf︸ ︷︷ ︸
nullity

= dimV,

one obtain the equivalences

[f invertible] ⇐⇒ [Kerf = {0} and dimV = dimW ] ⇐⇒ [Imf = W and dimV = dimW ].

An m× n matrix M defines the linear map x ∈ Rn −→ Ax ∈ Rm. Note that an n× n matrix
M has at most one left (or right) inverse. Consequently, if a square matrix M admits a left
(or right) inverse, it is a both-sided inverse. In other words, one has AM = I ⇒ MA = I.
The transpose of a matrix M is the matrix M> whose entries are (M>)i,j = Mj,i. A
square matrix M is called symmetric if M> = M and skew-symmetric if M> = −M . An
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orthogonal matrix is a square matrix P satisfying PP> = I (= P>P ). In fact, a necessary
and sufficient condition for a matrix to be orthogonal is that its columns (or rows) form
an orthonormal system. An orthogonal matrix is also characterized by the fact that it
preserves the norm [i.e. ‖Px‖ = ‖x‖ for all x] – or the inner product [i.e. 〈Px, Py〉 = 〈x, y〉
for all x and y].

A number λ is an eigenvalue of a n × n matrix M if Mx = λx for some nonzero vector x,
called eigenvector associated to λ. The eigenvalues of A are the roots of the characteristic
polynomial PM (λ) := det(M − λI), hence M admits at most n eigenvalues. Note that A is
invertible (or nonsingular) if and only if 0 is not an eigenvalue of M , i.e. if det(M) 6= 0.
The Cayley–Hamilton theorem states that PM (M) = 0. The n × n matrix M is said to
be diagonalizable if there exists a system of eigenvectors of M which form a basis of
Rn, or equivalently if there exist a diagonal matrice D and an invertible matrix P such
that M = PDP−1. Note that the the columns of P are the eigenvectors of M and that
the diagonal elements of D are its eigenvalues. Since the trace and the determinant of a
matrix are invariant under the transformation M 7→ P−1MP , we see that tr(M) =(sum
of eigenvalues) and det(M) =(product of eigenvalues). Remember that a (real) symmetric
matrix is always diagonalizable via a orthogonal matrix, i.e. there exist a diagonal matrice
D and an orthogonal matrix P such that M = PDP>; in other words, one can find an
orthonormal basis of eigenvectors of M . A symmetric matrix M is called positive definite
if x>Mx = 〈x,Mx〉 > 0 for all nonzero vector x. Note that a symmetric matrix is positive
definite if and only if all its eigenvalues are positive.

5.2 Exercises

From the textbook: read sections 6.3, 6.4 and 7.2; 5 p 380, 6 p 386, 11 p 386, 1.d-e-f p 435,
13 p 436.

Optional problems

From the textbook: 6 p 380, 7 p 380.

1. Prove the statement that a square matrix M has at most one left inverse. Deduce the
statement that a left inverse is automatically both-sided. [Hint: if AM = I, multiply M
on the left by A+ I −MA.]

2. Establish that a symmetric matrix is positive definite iff all its eigenvalues are positive.
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Part II

Solving linear equations
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Chapter 6

Gaussian elimination

Many problems in economics, engineering and science involve differential equations which
cannot be solved explicitely. Their numerical solution is obtained by discretizing the differ-
ential equation – see part VI – leading to a system of linear equations. One may already
know that most of the time Gaussian elimination allows to solve this system. But the
higher the required accuracy, the finer the discretization, and consequently the larger the
system of linear equations. Gaussian elimination is not very effective in this case. One of
the goals of this part is to devise better methods for solving linear systems.

6.1 Linear systems

A system of m linear equations in n unknowns x1, . . . , xn is written in the form

a1,1x1 + a1,2x2 + a1,3x3 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + a2,3x3 + · · ·+ a2,nxn = b2
...

...

am,1x1 + am,2x2 + am,3x3 + · · ·+ am,nxn = bm.

In matrix notations, it can be written as [identify the different components]

Ax = b.

Geometrically, we look at the intersection of m hyperplanes of Rn. Hence, if n = m = 3,
we want to determine the intersection of 3 planes of the natural space R3. Although not
totally necessary, we assume from now on that m = n, i.e. that A is a square matrix.
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Simple cases

• diagonal structure: the system of equations has the form
a1,1 0 · · · 0
0 a2,2 · · · 0
...

... . . . ...
0 0 · · · an,n



x1

x2

...
xn

 =


b1

b2
...
bn

 .
It has the solution x = [b1/a1,1, b2/a2,2, . . . , bn/an,n]>, so long as all the ai’s are nonzero. If
ai,i = 0 for some i, then either xi can be chosen to be any number if bi = 0, or the system is
unsolvable.

• lower triangular structure: with ai,j = 0 for i < j, the system reduces to
a11 0 · · · 0
a2,1 a2,2 · · · 0

...
... . . . ...

an,1 an,2 · · · an,n



x1

x2

...
xn

 =


b1

b2
...
bn

 .
Assume that ai,i 6= 0 for all i. The system can be solved by forward substitutition, in
other words, get the value of x1 from the first equation a1,1x1 = b1, next substitute it in the
second equation a2,1x1 + a2,2x2 = b2 to find the value of x2, next subsitute x1 and x2 in the
third equation to find x3, and so on. Based on the steps

xi = (bi − ai,1x1 − ai,2x2 − · · · − ai,i−1xi−1)/ai,i,

a formal algorithm will look like

input n, (ai,j), (bi)
for i = 1 to n do

for j = 1 to i− 1 do bi ←bi − ai,jxj end do
xi ←bi/ai,i

end do
output (xi)

• upper triangular structure: with ai,j = 0 for i > j, the system reduces to
a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n

...
... . . . ...

0 0 · · · an,n



x1

x2

...
xn

 =


b1

b2
...
bn

 .
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The system can be solved by backward substitution, i.e. get xn first, then xn−1, and so
on until x1. The pseudocode of the corresponding algorithm can be easily written.

6.2 Computational cost

We often make the sensible assumption that the execution time of an algorithm is roughly
proportional to the number of operations being performed. We also usually neglect the
number of additions/subtractions with respect to the number of multiplications/divisions,
because the latter require more execution time than the former and because these num-
bers are often comparable in practice. Of course, if our algorithm does not contain any
multiplication/division, this is no longer legitimate.
Looking back at the forward substitution algorithm, we observe that for a given i the op-
eration count is i mult./div., hence the operation count for the whole algorithm is

n∑
i=1

i =
n(n+ 1)

2
=
n2

2
+
n

2
.

It makes no sense to use this accurate expression, firstly because n/2 is small compared
to n2/2 when n is large and secondly because our starting assumptions are themselves not
accurate. Instead, it is more appropriate to consider only n2/2 and in fact only n2 since
the execution time is anyway obtained via a proportionality factor. We then use the ‘big-O’
notation to state that

the complexity of the forward/backward substitution algorithm is O(n2).

For example, if a system of 50 equations in 50 unknowns is solved in 0.1 seconds on our
computer, we can estimate the time needed to solve a 5000× 5000 system by scaling by the
factor 1002 = 104, so that the computation would take us 1000 sec ≈ 15 min.
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6.3 Gaussian elimination

6.3.1 An example, to start with

Let us refresh our memory of this familiar concept with a particular case. We wish to solve
the system

2x + y − z = 2
6x + 2y − 2z = 8
4x + 6y − 3z = 5.

The strategy is to combine the second equation and the first one to form a new second
equation where the unknown x does not appear, and likewise to form a new third equation
where the unknown x does not appear either. Then we combine the two new equations
into a new third one, getting rid of the unknown y as well. We are then able to solve by
backward substitution, first determining z, then y and finally x. Here it how it unfolds, in
so-called tableau form,2 1 −1 | 2

6 2 −2 | 8
4 6 −3 | 5

 R2←R2−3R1−→
R3←R3−2R1

2 1 −1 | 2
0 −1 1 | 2
0 4 −1 | 1

 R3←R3+4R2−→

2 1 −1 | 2
0 −1 1 | 2
0 0 3 | 9

 .
The solution z = 3, y = 1, x = 2 follows.

Note that, when performing Gaussian elimination, we merely use some elementary row
operations which leave the solutions of the system unchanged. Namely, these are

Op.1: multiply a row by a nonzero constant,

Op.2: add/subtract a row to another,

Op.3: swap one row for another.
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6.3.2 The algorithm

Suppose we have already performed j − 1 steps of the algorithm. The current situation is
described by the tableau form

a
(j)
1,1 a

(j)
1,2 · · · a

(j)
1,j a

(j)
1,j+1 · · · a

(j)
1,n | b

(j)
1

0 a
(j)
2,2 · · · a

(j)
2,j a

(j)
2,j+1 · · · a

(j)
2,n | b

(j)
2

0 0
. . . ...

... · · ·
...

...
... 0 a

(j)
j,j a

(j)
j,j+1 · · · a

(j)
j,n | b

(j)
j

0
... 0 a

(j)
j+1,j a

(j)
j+1,j+1 · · · a

(j)
j+1,n | b

(j)
j+1

0
...

...
...

... · · ·
... |

...

0
... 0 a

(j)
n,j a

(j)
n,j+1 · · · a

(j)
n,n | b

(j)
n


,

and we perform the operationsRj+1 ← Rj+1−
a

(j)
j+1,j

a
(j)
j,j

Rj , . . . , Rn ← Rn−
a

(j)
n,j

a
(j)
j,j

Rj to ‘eliminate’

a
(j)
j+1,j , . . . , a

(j)
n,j . Remark that the numbers a(j)

j,j , called pivots, must be nonzero otherwise

the algorithm should halt. If a(j)
j,j = 0 the remedy is to exchange the rows of the tableau to

obtain, if possible, a nonzero pivot – see Op.3. This technique is called partial pivoting.
In fact, one should make the exchange so that the element of largest magnitude in the
lower part of the j-th column ends up in the pivotal position. This also reduces the chance
of creating very large number, which might lead to ill conditioning and accumulation of
roundoff error. We do not bother about partial pivoting in the following version of the
Gaussian elimination algorithm. Here, the result of the algorithm is an upper triangular
system of equations. The associated backward substitution subprogram is omitted.

input n, (ai,j), (bi)
for j = 1 to n− 1
if aj,j = 0 then error ‘pivot j equals zero’
else for i = j + 1 to n

do m← ai,j/aj,j , bi ← bi −m ∗ bj , aj,j ← 0,
for k = j + 1 to n do ai,k ← ai,k −m ∗ aj,k end do
end do

end if
output (ai,j)

Remark. This portion of code has evolved from the primitive form
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input n, (ai,j), (bi)
for j = 1 to n− 1
do eliminate column j

output (ai,j)

to the final one via the intermediary version

input n, (ai,j), (bi)
for j = 1 to n− 1

for i = j + 1 to n do eliminate ai,j end do
end do
output (ai,j)

It is often a good idea to break up a code into several smaller parts – it facilitates its reading
and the possible mistakes will be easier to identify.

6.3.3 Operation count

Examining the previous algorithm, we count n− j + 2 mult./div. for fixed j and i. Then, for
a fixed j, the number of mult./div. is (n− j)(n− j + 2) = (n− j + 1)2 − 1. Finally the total
number of mult./div. is

n−1∑
j=1

(
(n− j + 1)2 − 1

)
=

n∑
`=2

`2 − (n− 1) =
n(n+ 1)(2n+ 1)

6
− 1− (n− 1) =

n3

3
+ · · · .

We observe that the elimination step is relatively expensive compared to the backward
substitution step. We will remember that

the complexity of the Gaussian elimination algorithm is O(n3).

Remark. When the n × n matrix A is invertible, the solution of the linear system Ax = b

obeys Cramer’s rule, that is

xi = det


a1,1 . . . a1,i−1 b1 a1,i+1 . . . a1,n

a2,1 . . . a2,i−1 b2 a2,i+1 . . . a2,n

... · · ·
... · · ·

... · · ·
...

an,1 . . . an,i−1 bn an,i+1 . . . an,n

 /detA, i ∈ J1, nK.
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Unfortunately, the number of operations required to compute the two determinants grows
like O(n!), therefore this method is totally unpractical.

6.4 Exercises

From the textbook: 4 p 356, 10 p 358, 12 p 358 [write the algorithm with the software of
your choice and test it on the matrices of 5.c and 5.d p 357].

Optional problems

From the textbook: 19 p 359
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Chapter 7

The LU and Cholesky
factorizations

7.1 LU -factorization

7.1.1 Definition

We say that an n× n matrix A admits an LU -decomposition if

A = LU, where L and U are n× n lower and upper triangular matrices, respectively.

This is of interest for several reasons, among which we can mention

• calculation of a determinant [detA = detL · detU =
∏n

i=1 li,i ·
∏n

i=1 ui,i] and test for
nonsingularity [A invertible iff li,i 6= 0 and ui,i 6= 0 for all i ∈ J1, nK].

• determination of an inverse [A−1 = U−1L−1].

• solution of a linear system:

[Ax = b] ⇐⇒ [Ly = b, y = Ux].

Both latter systems are triangular and can easily be solved. The advantage of this
decomposition, compared to the Gaussian elimination, is that one does not consider
the right hand side b until the factorization is complete. Hence, when there are many
right hand sides, it is unnecessary to repeat a O(n3) procedure at each time, only O(n2)
operations will be required for each new b.
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An LU -decomposition is never unique. This is not surprising, since A = LU induces n2

scalar equations [one for each entry of A] linking n2 +n unknowns [the entries of L and U ].
As a matter of fact, if D = Diag[d1,1, . . . , dn,n] is a diagonal matrix such that each diagonal
element di,i is nonzero and if A = LU , then there also holds

A = (LD)(D−1U), where LD and D−1U are lower and upper triangular, respectively.

Since the diagonal elements of LD and D−1U are li,idi,i and ui,i/di,i, i ∈ J1, nK, we can
most of the time make an arbitrary choice for the diagonal elements of L or U . The most
common one imposes L to be unit lower triangular (i.e. li,i = 1, i ∈ J1, nK), we refer to this
as Doolittle’s factorization. If U was unit upper triangular, we would talk about Crout’s
factorization.

Note that if A is nonsingular, then it admits at most one Doolittle’s/Crout’s factorization.
Indeed, suppose e.g. that A = LU = L̃Ũ , where L, L̃ are unit lower triangular and U, Ũ are
upper triangular. Since A is nonsingular, one has detA = detLdetU = detU 6= 0. Hence
U is nonsingular. Remark also that L̃ is nonsingular. Then, one can write L̃−1L = ŨU−1.
This means that the upper matrix ŨU−1 is also unit lower triangular, therefore ŨU−1 = I.
It follows that U = Ũ and L = L̃.

7.1.2 The calculation of the LU -factorization

Suppose that A admits a Doolittle’s factorization. Denote the columns of L by `1, . . . , `n and
the rows of U by u>1 , . . . , u>n . Thus,

A = LU =
[
`1 · · · `n

]
u>1
...
u>n

 =
n∑

i=1

`iu
>
i .

Observe the specific form of each of the rank-one matrices `iu>i , which is



0
...
0
1

`i+1,i

...
`n,i


[
0 · · · 0 ui,i ui,i+1 · · · ui,n

]
=



. . . ... . . .
0 0 0

. . . ... . . .

· · · 0 · · · ui,i ui,i+1 · · · ui,n

. . . ui,i`i+1,i × ×

0
... × . . . ×

. . . ui,i`n,i × ×


.
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This allows to simply read u>1 = first row of A and `1 = first column of A/u1,1. Then we
considerA1 := A−`1u>1 , and we read u>2 = second row of A1, `2 = second column of A1/u2,2,
and so on. This leads to the following LU -algorithm:

Set A0 := A; for k = 1 to n, set

u>k = k-th row of Ak−1, `k = k-th column of Ak−1 scaled so that `k,k = 1,

and calculate Ak = Ak−1 − `ku>k before incrementing k.

Note that a necessary condition for the realization of this algorithm is that ui,i 6= 0 for all
i ∈ J1, nK.

Let us now recall that the k-th leading principal minor of a matrix A is

Ak :=


a1,1 · · · a1,k

... . . . ...
ak,1 · · · ak,k

 .
One can see that if a matrix A admits the LU -decomposition A = LU , then the matrix Ak

admits the decomposition Ak = LkUk by writing

A =:

[
Ak B

C D

]
=

[
Lk 0

X L′

]
︸ ︷︷ ︸

:=L

[
Uk Y

0 U ′

]
︸ ︷︷ ︸

:=U

=

[
LkUk LkY

XUk XY + L′U ′

]
.

In particular, if A = LU is a Doolittle’s factorization, then

detAk = detUk =
k∏

i=1

ui,i, k ∈ J1, nK,

and one obtains the diagonal entries of U as

u1,1 = detA1, uk,k =
detAk

detAk−1
, k ≥ 2.

The necessary condition for the realization of the LU -algorithm can therefore be translated
in terms of the matrix A as detAk 6= 0, k ∈ J1, nK. It turns out that this condition is
somewhat sufficient for a Doolittle’s factorization to exist.

Theorem 7.1. For an n× n nonsigular matrix A, there holds the equivalence[
detAk 6= 0, k ∈ J1, n− 1K

]
⇐⇒

[
A admits a (unique) Doolittle’s factorization

]
.
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Proof. We proceed by induction on n for the direct implication. Clearly the implication
is true for n = 1. Now let A be an n × n invertible matrix such that detAk 6= 0 for all
k ∈ J1, n− 1K. We can apply the induction hypothesis to An−1 and write An−1 = L̃Ũ , where
the unit lower triangular matrix L̃ and the upper triangular matrix Ũ are invertible. Then,

with A =:

[
An−1 B

C d

]
, X := CŨ−1, Y := L̃−1B, and δ := d−XY , one obtains

[
L̃ 0

X 1

][
Ũ Y

0 δ

]
=

[
L̃Ũ L̃Y

XŨ XY + δ

]
=

[
An−1 B

C d

]
,

which is a Doolittle’s factorization for A.
For the converse implication, suppose that a nonsingular matrix admits the Doolittle’s fac-
torization A = LU . Then detA =

∏n
i=1 ui,i is nonzero and it follows that detAk =

∏k
i=1 ui,i

is nonzero, too.

7.2 Gaussian elimination revisited

The elementary row operations on a matrix A are obtained by multiplying A on the left by
certain matrices, namely

Op.1:



. . . i

1
...

i · · · λ

1
. . .


× A replaces the row a>i of A by λa>i ,

Op.2:



. . .
i · · · 1

... . . .
j · · · ±1 · · · 1

. . .


× A replaces the row a>j of A by a>j ± a>i ,

Op.3:



1
i · · · 0 · · · 1

... . . . ...
j · · · 1 · · · 0

1


× A swaps the rows a>i and a>j of A.
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Now suppose that the Gaussian elimination algorithm can be carried out without encoun-
tering any zero pivot. The algorithm, performed by means of row operations of the type
a>j ← a>j −λj,ia

>
i , i < j, produces an upper triangular matrix. But these row operations are

obtained by left-multiplication with the unit lower triangular matrices

Li,j =



. . .
i · · · 1

... . . .
j · · · −λj,i · · · 1

. . .


.

Hence, the algorithm can be expressed as

Ln−1,n · · · L2,n · · ·L2,3 L1,n · · ·L1,2A = U.

Since the inverse matrices

L−1
i,j =



. . .
i · · · 1

... . . .
j · · · λj,i · · · 1

. . .


are unit lower triangular, we get

A = LU, where L := L−1
1,2 · · ·L

−1
n−1,n is constructed throughout the algorithm.

This is particularly transparent on an example, e.g. the one of section 6.3.1. Instead of
inserting zeros in the lower part of the matrix, we store the coefficients λj,i.2 1 −1

6 2 −2
4 6 −3

 −→
2 1 −1

3 −1 1
2 4 −1

 −→
2 1 −1

3 −1 1
2 −4 3

 .

This translates into

2 1 −1
6 2 −2
4 6 −3

 =

1 0 0
3 1 0
2 −4 1


2 1 −1

0 −1 1
0 0 3

 .
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7.3 Cholesky factorization

This is just a fancy word for an LU -factorization applied to a symmetric positive definite
matrix. Let us state the result straightaway.

Theorem 7.2. Let A be a real symmetric positive definite matrix. It admits a unique
factorization A = LL>, where L is lower triangular with positive diagonal entries.

Proof. By considering x>Ax = x>Akx > 0 for nonzero vectors x = [x1, . . . , xk, 0, . . . , 0]>,
we see that the leading principal minors of A are all positive definite, hence nonsingular.
Thus A admits a Doolittle’s factorization A = LU . From LU = A = A> = U>L> and
the nonsingularity of L and U , one derives UL−> = L−1U> =: D. This latter matrix is
simultaneously lower and upper triangular, i.e. it is diagonal. Its entries are positive, as
seen from

di,i = e>i Dei = e>i UL
−>ei = (L−>ei)>LU(L−>ei) =: x>Ax > 0.

Hence the matrix D1/2 := Diag[
√
d1,1, . . . ,

√
dn,n] satisfies D1/2D1/2 = D, and it remains to

write
A = LU = LDL> = LD1/2D1/2L> = (LD1/2)(LD1/2)>.

The proof of uniqueness is left as an easy exercise.

7.4 Exercises

From the textbook: 6.a-b. p 396.

1. Check that the matrix

[
0 1
1 0

]
has no LU -factorization.

2. Prove that the matrix 1 a 1
1 b 1
1 c 1

 , a 6= b,

admits a unique Doolittle’s decomposition. Given an n×n matrix, what does it say about
the converse of

[detAk 6= 0, k ∈ J1, nK] =⇒ [A admits a unique Doolitle’s factorization] ?
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3. Calculate all Doolittle’s factorization of the matrix

A =


10 6 −2 1
10 10 −5 0
−2 2 −2 1
1 3 −2 3

 .
By using one of these factorizations, find all solutions of the equation Ax = b, where
b = [−2, 0, 2, 1]>.

4. Show that the LU -factorization algorithm requires O(n3) mult./div.

5. True or false: If A has a Doolittle’s factorization, then it has Crout’s factorization? Give
either a proof or a counterexample.

6. For a nonsingular matrix M , establish that the matrix MM> is symmetric positive
definite.

7. Implement first an algorithm for finding the inverse of an upper triangular matrix U

[hint: if C1, . . . , Cn denote the columns of U−1, what is UCi?]. Implement next the LU -
factorization algorithm. Implement at last an algorithm for finding the inverse of a
square matrix. Test your algorithms along the way.

8. Calculate the Cholesky factorization of the matrix

1 1
1 2 1

1 3 1
1 4 1

1 5 1
1 λ


.

Deduce from the factorization the value of λ that makes the matrix singular. Also find
this value of λ by seeking a vector – say, whose first component is one – in the null-space
of the matrix .

Optional problems

1. A matrix A = (ai,j) in which ai,j = 0 when j > i or j < i − 1 is called a Stieljes matrix.
Devise an efficient algorithm for inverting such a matrix.
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2. Find the inverse of the matrix

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
0 0 1 −1 · · · 0
...

... . . . . . . ...
...

... 0 1 −1
0 0 · · · · · · 0 1


.
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Chapter 8

Iterative methods

Direct methods [Gaussian algorithm, LU -factorization,...] for solving the problem Ax = b

are often computationally expensive. By contrast, if we drop the perfect accuracy require-
ment [which is unrealistic anyway], some indirect methods have decisive advantage
over direct methods in terms of speed and demand on computer memory. These itera-
tive schemes [producing a sequence of vectors that will approximate the solution] are
furthermore very efficient for sparse systems [a large number of entries of A are zero]
and generally stable.

8.1 Description of two basic schemes

Consider the linear system Ax = b, which we break down into n equations
n∑

j=1

ai,jxj = bi, i ∈ J1, nK.

These are rewritten by isolating the unknown xi to give

ai,ixi = −
n∑

j=1, j 6=i

ai,jxj + bi, i ∈ J1, nK.

In matrix form, this reduces to the equation Dx = (L+U)x+ b, where we have decomposed
A in a diagonal matrix D, a strictly lower triangular matrix −L, and a strictly upper trian-
gular matrix −U . To solve this by iteration, we can construct [if D is invertible] a sequence
of vectors (x(k)) by setting

(8.1) Dx(k+1) = (L+ U)x(k) + b
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and hope that x(k) will approach the exact solution x∗. This is known as the Jacobi it-
eration. In fact, if the sequence (x(k)) is convergent, then its limit is necessarily x∗. The
computations to be performed, somewhat hidden in (8.1), are

x
(k+1)
i =

1
ai,i

−∑
j<i

ai,jx
(k)
j −

∑
j>i

ai,jx
(k)
j + bi

 , i ∈ J1, nK.

At step i, it seems intuitively better to replace the coordinates x(k)
j , j < i, by their updated

values x(k+1)
j , j < i, i.e. to perform the computations

x
(k+1)
i =

1
ai,i

−∑
j<i

ai,jx
(k+1)
j −

∑
j>i

ai,jx
(k)
j + bi

 , i ∈ J1, nK.

This translates into the matrix form x(k+1) = D−1
[
Lx(k+1) + Ux(k) + b

]
, or equivalently

(D − L)x(k+1) = Ux(k) + b.

This scheme is known as the Gauss–Seidel iteration.

The algorithms for these two schemes copy the following pieces of pseudocode.

Jacobi
input n, ai,j , bi, xi, M , ε
for k = 1 to M

do
for i = 1 to n

do ui ←
(
bi −

∑
j 6=i ai,jxj

)
/ai,i end do

end for
if maxj |uj − xj | < ε then output k, (xi) stop end if
for i = 1 to n

do xi ← ui end do
end for
end do

end for
output ‘procedure unsuccessful’, (xi)

Gauss–Seidel
input n, ai,j , bi, xi, M , ε
for k = 1 to M

do
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for i = 1 to n
do ui ←

(
bi −

∑
j<i ai,juj −

∑
j>i ai,jxj)/ai,i end do

end for
if maxj |uj − xj | < ε then output k, (xi) stop end if
for i = 1 to n

do xi ← ui end do
end for
end do

end for
output ‘procedure unsuccessful’, (xi)

If we drop the tolerance restriction, the latter can be shortened to
input n, ai,j , bi, xi, M
for k = 1 to M

do for i = 1 to n
do xi ←

(
bi −

∑
j 6=i ai,jxj

)
/ai,i end do

end for end do
end for
output k, (xi)

8.2 Conditions for convergence

We assume that the matrix A is nonsingular. The equation Ax = b can always be rewritten
as Qx = (Q − A)x + b, where the splitting matrix Q should be nonsingular and the
system Qx = c should be easy to solve. Then we consider the iteration process Qx(k+1) =
(Q−A)x(k) + b, which is rather rewritten, for the sake of theoretical analysis, as

(8.2) x(k+1) = (I −Q−1A)x(k) +Q−1b.

We say that this iterative method converges if the sequence (x(k)) converges [to the unique
solution x∗ of Ax = b] regardless of the initial vector x(0). Obviously, the method is con-
vergent if and only if ε(k) := x(k) − x∗, the error vector in the k-th iterate, tends to zero,
or equivalently if and only if the residual vector r(k) := Ax(k) − b = Aε(k) tends to zero.
Subtracting x∗ = (I −Q−1A)x∗ +Q−1b to (8.2) gives

ε(k+1) = (I −Q−1A)ε(k), hence ε(k) = (I −Q−1A)kε(0).

The following result is now more or less immediate.
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Proposition 8.1. If δ := |‖(I −Q−1A)‖| < 1 for some natural matrix norm, then

1. the scheme (8.2) converges: lim
k→+∞

ε(k) = 0,

2. the convergence is exponentially fast: ‖ε(k)‖ ≤ δk‖ε(0)‖,

3. the difference of consecutive terms controls the error: ‖ε(k)‖ ≤ δ

1− δ
‖x(k) − x(k−1)‖.

Reminder: A norm |‖•‖|on the space of n × n matrices is called a natural (or induced, or

subordinate) matrix norm if it has the form |‖B‖| = max
x 6=0

‖Bx‖
‖x‖

for some vector norm ‖•‖

on Rn.

Proof. We get ‖ε(k)‖ ≤ δk‖ε(0)‖ directly from the expression of ε(k) in terms of ε(0), and in
particular one has ‖ε(k)‖ −→ 0. Furthermore, taking the limit m→ +∞ in

‖x(k+m) − x(k)‖ ≤ ‖x(k+m) − x(k+m−1)‖+ · · ·+ ‖x(k+1) − x(k)‖

= ‖(I −Q−1A)m(x(k) − x(k−1))‖+ · · ·+ ‖(I −Q−1A)(x(k) − x(k−1))‖

≤ (δm + · · ·+ δ)‖x(k) − x(k−1)‖ = δ
1− δm

1− δ
‖x(k) − x(k−1)‖

yields the part 3. This actually insures that it is safe to halt the iterative process when
‖x(k) − x(k−1)‖ is small.

Corollary 8.2. If A is diagonally dominant, that is if

|ai,i| >
n∑

j=1, j 6=i

|ai,j |, i ∈ J1, nK,

then the Jacobi method is convergent.

Proof. For the Jacobi iteration, one takes Q = D. We consider the norm on Rn defined by
‖x‖∞ := max

i∈J1,nK
|xi|. We leave to the reader the task of checking every step in the inequality

|‖I −D−1A‖|∞ = max
i∈J1,nK

n∑
j=1

|(I −D−1A)i,j | = max
i∈J1,nK

n∑
j=1, j 6=i

∣∣∣∣ai,j

ai,i

∣∣∣∣ < 1.

47



As a matter of fact, Proposition 8.1 can be strengthen to give a necessary and sufficient
condition for convergence. We recall first that the spectral radius of a matrix B is the
maximum of the modulus of its eigenvalues, i.e.

ρ(B) := max{|λ| : det(B − λI) = 0},

and we will use the fact that

ρ(B) = inf{|‖B‖|, |‖•‖| is a natural matrix norm}.

Theorem 8.3. We have the equivalence

[The iteration (8.2) converges] ⇐⇒ [ρ(I −Q−1A) < 1].

Proof. The previous fact combined with Proposition 8.1 yields the ⇐ part. As for the ⇒
part, suppose that the iteration (8.2) converges, i.e. Bkε converges to zero for any ε ∈ Rn,
where we have set B := I − Q−1A. Let us now assume that r := ρ(B) ≥ 1, which should
lead to a contradiction. There exist x ∈ Cn \ {0} and θ ∈ [0, 2π) such that Bx = reiθx. It
follows that Bkx = rkeikθx. Writing x = u+ iv with u, v ∈ Rn, one has Bkx = Bku+ iBkv −→
0 + i · 0 = 0. But clearly rkeikθx 6→ 0, hence the required contradiction.

Corollary 8.4. If A is diagonally dominant, then the Gauss–Seidel method is convergent.

Proof. For the Gauss–Seidel iteration, one takes Q = D − L = A + U . According to the
previous theorem, it suffices to prove that |λ| < 1 for any eigenvalue of I − Q−1A. Let us
then consider x ∈ Cn \ {0} such that (I −Q−1A)x = λx for some λ ∈ C with |λ| ≤ 1, and let
us derive a contradiction. We have (Q − A)x = λQx, in other words Ux = λDx − λLx, or
λDx = Ux+ λLx. For the index i such that |xi| = ‖x‖∞, we get

|λai,ixi| =
∣∣∣−∑

j>i

ai,jxj − λ
∑
j<i

ai,jxj

∣∣∣ ≤∑
j>i

|ai,j ||xj |+ |λ|
∑
j<i

|ai,j ||xj |

≤
[∑

j>i

|ai,j |
]
· ‖x‖∞ + |λ|

[∑
j<i

|ai,j |
]
· ‖x‖∞ ≤ |λ|

[∑
j 6=i

|ai,j |
]
· ‖x‖∞ < |λ||ai,i|‖x‖∞,

which results in a contradiction.

8.3 Exercises

From the textbook: 2.a.c., 4.a.c, 5, 7 p 450; 17 p 451; 26 p 453.
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1. Program the Gauss–Seidel method and test it on these examples
3x + y + z = 5
x + 3y − z = 3
3x + y − 5z = −1

,


3x + y + z = 5
3x + y − 5z = −1
x + 3y − z = 3

.

Analyse what happens when these systems are solved by simple Gaussian elimination
without pivoting.

2. The iteration x(k+1) = Hx(k) + b is applied for k = 0, 1, . . ., where H is the real 2 × 2
matrix

H =

[
α γ

0 β

]
,

with γ large and |α| < 1, |β| < 1. Calculate the elements of Hk and show that they tend
to zero as k → +∞. Further, establish the equation x(k) − x∗ = Hk(x(0) − x∗), where x∗

is defined by x∗ = Hx∗ + b. Thus deduce that the sequence (x(k)) converges to x∗.

3. For some choice of x(0), the iterative method1 1 1
0 1 1
0 0 1

x(k+1) +

0 0 0
ξ 0 0
η ζ 0

x(k) = b

is applied for k = 0, 1, . . . in order to solve the linear system1 1 1
ξ 1 1
η ζ 1

x = b,

where ξ, η and ζ are constants. Find all values of the constants such that the sequence
(x(k)) converges for every x(0) and b. Give an example of nonconvergence when ξ = η =
ζ = −1. Is the solution always found in at most two iterations when ξ = ζ = 0?
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Chapter 9

Steepest descent and conjugate
gradient methods
The goal here is once again to solve the system Ax = b, but with the additional assumption
that A is a n × n symmetric positive definite matrix. Recall the inner product notation of
two vectors x and y in Rn:

〈x, y〉 := x>y =
n∑

i=1

xiyi.

Note that in general 〈x,Ay〉 = 〈A>x, y〉, which becomes 〈x,Ay〉 = 〈Ax, y〉 here, due to the
symmetry of A. The following observation about the quadratic form q(x) := 〈x,Ax〉−2〈x, b〉
will be useful.

Lemma 9.1. For x, v ∈ Rn, the minimun of q along the ray through x parallel to v is

min
t∈R

q(x+ tv) = q(x+ t∗v) = q(x)− 〈v, b−Ax〉
2

〈v,Av〉
, where t∗ :=

〈v, b−Ax〉
〈v,Av〉

.

Furthermore, the vector x∗ minimizes q if and only if it satisfies Ax∗ = b.

Proof. We calculate

q(x+ tv) = 〈x+ tv, Ax+ tAv − 2b〉 = 〈x,Ax− 2b〉+ t(〈v,Ax− 2b〉+ 〈x,Av〉) + t2〈v,Av〉

= q(x) + 2t〈v,Ax− b〉+ t2〈v,Av〉.

This quadratic polynomial is minimized at the zero of its derivative, i.e. at t∗ :=
〈v, b−Ax〉
〈v,Av〉

,

where it takes the value given in the Lemma. The second part is now obtained as follow:

x∗ minimizes q ⇐⇒ ∀ v, q(x∗) ≤ min
t∈R

q(x∗ + tv) ⇐⇒ ∀ v, 〈v, b−Ax∗〉 = 0 ⇐⇒ b−Ax∗ = 0.
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Remark. Have we used the hypothesis that A is positive definite?

9.1 Steepest descent algorithm

According to the previous consideration, a solution of Ax = b may be obtained as the limit
of a sequence (x(k)) for which q(x(k))→ min

x∈Rn
q(x). Here is the description of such an iterative

scheme. Given x(k−1), pick a search direction v(k) [with ‖v(k)‖ = 1, say], and let x(k) be
the minimum of q along the ray through x(k−1) parallel to v(k), that is

x(k) = x(k−1) + tkv
(k), tk =

〈v(k), b−Ax(k)〉
〈v(k), Av(k)〉

.

The search direction is taken to be the direction of greatest decrease of q – hence the name
steepest descent method. This direction turns out to be

∇q(x(k−1)) =
[
∂q

∂x1
(x(k−1)), . . . ,

∂q

∂xn
(x(k−1))

]>
= 2(Ax(k−1) − b),

i.e. the direction of the residual. However, this method converges slowly, and is therefore
rarely used for linear systems.

9.2 Conjugate gradient method

We still follow the basic strategy of minimizing the quadratic form q. The family of methods
for which the search directions (v(1), . . . , v(n)) are chosen to form an A-orthogonal system
constitutes the conjugate direction methods. The solution is given in a finite number of
steps, precisely in n steps. Assuming exact arithmetic, that is; the picture is not so perfect
if roundoff errors are taken into account.

Theorem 9.2. Let (v(1), . . . , v(n)) be a set of A-orthogonal vectors, i.e.

〈v(i), Av(j)〉 = 0, for i, j ∈ J1, nK, i 6= j.

Choose the vector x(0) arbitrarily and define the sequence (x(k)) by

(9.1) x(k) = x(k−1) +
〈v(k), b−Ax(k−1)〉
〈v(k), Av(k)〉

v(k), k ∈ J1, nK.

Then the resulting vector satisfies Ax(n) = b.
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Proof. We prove by induction on k that the residual r(k) = b − Ax(k) is orthogonal to the
system (v(1), . . . , v(k)), so that r(n) is orthogonal to the basis (v(1), . . . , v(n)), hence must be
zero. For k = 0, there is nothing to establish, and the induction hypothesis holds trivially.
Now suppose that it holds for k−1, that is r(k−1) ⊥ (v(1), . . . , v(k−1)). Then apply −A to (9.1)
and add b to obtain

(9.2) r(k) = r(k−1) − 〈v
(k), r(k−1)〉
〈v(k), Av(k)〉

Av(k).

We clearly get 〈r(k), v(j)〉 = 0 for j ∈ J1, k − 1K and we also observe that 〈r(k), v(k)〉 =
〈r(k−1), v(k)〉 − 〈v(k), r(k−1)〉 = 0. We have shown that r(k) ⊥ (v(1), . . . , v(k)), i.e. that the
induction hypothesis holds for k. This concludes the proof.

To initiate this process, one may prescribe the A-orthogonal system at the beginning. This
can be done using the Gram–Schmidt algorithm [see Chapter 10 – the positive definiteness
of A insures that 〈x,Ay〉 defines an inner product]. One may also determine the search di-
rections one at a time within the solution process. In the conjugate gradient method,
the vectors v(1), . . . , v(n) are chosen not only to be A-orthogonal, but also to induce an or-
thogonal system of residual vectors. Therefore, one should have r(k) ⊥ span[r(0), . . . , r(k−1)],
and the A-orthogonality of the search directions implies that r(k) ⊥ span[v(1), . . . , v(k)],
just like in the proof of Theorem 9.2. This suggests to impose span[r(0), . . . , r(k−1)] =
span[v(1), . . . , v(k)] =: Uk for each k. Then, since r(k) ∈ Uk+1, one could write [renormal-
izing the search direction if necessary],

r(k+1) = αk+1v
(k+1) + αkv

(k) + · · ·+ α1v
(1), with αk+1 = 1.

Using (9.2) and the A-orthogonality of (v(1), . . . , v(n)), one would derive that

αj =
1

〈v(j), Av(j)〉
〈r(k), Av(j)〉 =

1
〈v(j), r(j−1)〉

〈r(k), r(j−1) − r(j)〉.

We would have αj = 0 for j ≤ k − 1, αk = − 〈r
(k), r(k)〉

〈v(k), r(k−1)〉
and 1 = αk+1 =

〈r(k), r(k)〉
〈v(k+1), r(k)〉

.

Note that the equality 〈v(k+1), r(k)〉 = 〈r(k), r(k)〉 should also hold when k is replaced by

k−1, so that αk = − 〈r(k), r(k)〉
〈r(k−1), r(k−1)〉

. Rearranging the expression for r(k+1), we would obtain

v(k+1) = r(k)+
〈r(k), r(k)〉
〈r(k−1), r(k−1)〉

v(k). At this point, we have speculated on the possible recursive

construction of the search directions. It is time to give a precise description of the process
and to check rigorously that it yields the desired result.
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Theorem 9.3. Choose the vector x(0) arbitrarily, and set v(1) = r(0) = b− Ax(0). Assuming
that x(0), . . . , x(k−1) and v(1), . . . , v(k) have been constructed, set

x(k) = x(k−1) + tk v
(k), tk =

〈r(k−1), r(k−1)〉
〈v(k), Av(k)〉

,

v(k+1) = r(k) + sk v
(k), sk =

〈r(k), r(k)〉
〈r(k−1), r(k−1)〉

.

Then the vector x(n) is a solution of Ax = b.

Remark. The residual vector should be determined according to r(k) = r(k−1) − tkAv
(k)

rather than r(k) = b−Ax(k). Besides, there seems to be a flaw in the definitions of tk and sk,
as we divide e.g. by 〈r(k−1), r(k−1)〉, which might equal zero. If this situation occurs, then
r(k−1) is already a solution of Ax = b. In any case, if r(k−1) = 0, then tk = 0, hence r(k) =
r(k−1) = 0, then tk+1 = 0, and so on. Updating the search direction becomes unnecessary.

Proof. The second equation implies that span[r(0), . . . , r(k−1)] = span[v(1), . . . , v(k)] =: Uk

for all k. We now establish by induction on k that r(k) and Av(k+1) are orthogonal to the
space Uk. For k = 0, there is nothing to show. Assume now that r(k−1) ⊥ Uk−1 and that
Av(k) ⊥ Uk−1. Then, we calculate, for u ∈ Uk−1,

〈r(k), u〉 = 〈r(k−1), u〉 − tk〈Av(k), u〉 = 0 + tk · 0 = 0,

and also

〈r(k), v(k)〉 = 〈r(k−1), v(k)〉 − tk〈Av(k), v(k)〉 = 〈r(k−1), v(k)〉 − 〈r(k−1), r(k−1)〉

= 〈r(k−1), v(k) − r(k−1)〉 = sk−1〈r(k−1), v(k−1)〉 = 0.

This proves that r(k) ⊥ Uk, which is the first part of the induction hypothesis relative to
k + 1. As for the second part, we calculate

〈Av(k+1), v(j)〉 = 〈v(k+1), Av(j)〉 = 〈r(k), Av(j)〉+ sk〈v(k), Av(j)〉

=
1
tk
〈r(k), r(j−1) − r(j)〉+ sk〈v(k), Av(j)〉.

Hence, for j ≤ k − 1, we readily check that 〈Av(k+1), v(j)〉 = 0, and for j = k, we observe
that 〈Av(k+1), v(k)〉 = −〈r(k), r(k)〉/tk + sk〈v(k), Av(k)〉 = 0. This proves that Av(k+1) ⊥ Uk,
which is the second part of the induction hypothesis relative to k+1. The inductive proof is
now complete. In particular, we have shown that the system (v(1), . . . , v(n)) is A-orthogonal.
Theorem 9.2 applies, and we conclude that Ax(n) = b.
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A computer code for the conjugate gradient method is based on the following pseudocode.

input n, A, b, x, M , ε, δ
r ← b−Ax, v ← r, c← 〈r, r〉
for k = 1 to M do

if 〈v, v〉 < δ then stop
else z ← Av, t← c/〈v, z〉, x← x+ tv, r ← r − tz, d← 〈r, r〉
end if
if d < ε then stop
else v ← r + (d/c)v, c← d

end if
end do end for
output k, x, r

9.3 Exercises

From the textbook: 12, 13 p 479; 3, 4 p 477.

1. In the method of steepest descent, show that the vectors v(k) and v(k+1) are orthogonal

and that q(x(k+1)) = q(x(k))− 〈r
(k), r(k)〉2

〈r(k), Ar(k)〉
.

2. Program and test the conjugate gradient method. A good test case is the Hilbert matrix
with a simple b-vector:

ai,j =
1

i+ j − 1
, bi =

ai,1 + ai,2 + · · ·+ ai,n

3
, i, j ∈ J1, nK.

Optional problems

1. Using Jacobi, Gauss–Seidel and the conjugate gradient methods with the initial vector
x(0) = [0, 0, 0, 0, 0]>, compute the solution of the system

10 1 2 3 4
1 9 −1 2 −3
2 −1 7 3 −5
3 2 3 12 −1
4 −3 −5 −1 15




x1

x2

x3

x4

x5

 =


12
−27
14
−17
12

 .
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Chapter 10

The QR factorization
By QR-factorization of an m × n matrix A, we understand either a decomposition of the
form

A = QR, where
Q is an m×m orthogonal matrix,
R is an m× n upper triangular matrix,

or a decomposition of the form

A = BT, where
the columns of the m× n matrix B are orthonormal,
T is an n× n upper triangular matrix.

Most of the time, we will assume thatm ≥ n, in which case every matrix has a (non-unique)
QR-factorization for either of these representations. In the case m = n, the factorization
can be used to solve linear systems, according to

[Ax = b] ⇐⇒ [Qy = b, y = Rx].

The system y = Rx is easy to solve [backward substitution], and so is the system Qy = b

[take y = Q>b]. Knowing a QR-factorization of A, one could also calculate its determinant
[detA = detQ · detR = ±

∏n
i=1 ri,i] and find its inverse [A−1 = R−1Q>].

10.1 The Gram–Schmidt orthogonalization process

10.1.1 The algorithm

Consider n linearly independent vectors u1, . . . , un in Rm. Observe that we necessarily have
m ≥ n. We wish to ‘orthonormalize’ them, i.e. to create vectors v1, . . . , vn such that

(v1, . . . , vk) is an orthonormal basis for Vk := span[u1, . . . , uk], each k ∈ J1, nK.
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It is always possible to find such vectors, and in fact they are uniquely determined if the
additional condition 〈vk, uk〉 > 0 is required. The step-by-step construction is based on the
following scheme.

Suppose that v1, . . . , vk−1 have been obtained; search in Vk for a vector

ṽk = uk +
k−1∑
i=1

ck,i vi such that ṽk ⊥ Vk−1;

the conditions 0 = 〈ṽk, vi〉 = 〈uk, vi〉+ ck,i impose the choice ck,i = −〈uk, vi〉;

now that ṽk is completely determined, form the normalized vector vk =
1
‖ṽk‖

ṽk.

The accompanying code parallels the pseudocode

input n, (uk)
for k = 1 to n do vk ← uk,

for i = 1 to k − 1 do
ck,i ← 〈uk, vi〉, vk ← vk − ck,ivi

end do end for
vk ← vk/‖vk‖
end do end for
output (vk)

For example, we write down explicitely all the steps in the orthonormalization process for
the vectors

u1 = [6, 3, 2]>, u2 = [6, 6, 1]>, u3 = [1, 1, 1]>.

• ṽ1 = u1, ‖ṽ1‖ =
√

36 + 3 + 4 = 7, v1 = 1/7 [6, 3, 2]>;

• ṽ2 = u2 + αv1, 0 = 〈ṽ2, v1〉 ⇒ α = −〈u2, v1〉 = −(16 + 18 + 2)/7, α = −8,
ṽ2 = 1/7 [7 · 6− 8 · 6, 7 · 6− 8 · 3, 7 · 1− 8 · 2]> = 1/7 [−6, 18,−9]> = 3/7 [−2, 6,−3]>,
‖ṽ2‖ = 3/7

√
4 + 36 + 9 = 3, v2 = 1/7 [−2, 6,−3]>;

• ṽ3 = u3 + βv2 + γv1,
0 = 〈ṽ3, v2〉,
0 = 〈ṽ3, v1〉,

⇒
β = −〈u3, v2〉 = −(−2 + 6− 3)/7,
γ = −〈u3, v1〉 = −(6 + 3 + 2)/7,

β = −1/7,
γ = −11/7,

ṽ3 = 1/49 [49 + 2− 66, 49− 6− 33, 49 + 3− 22]> = 1/49 [−15, 10, 30]> = 5/49 [−3, 2, 6]>,
‖ṽ3‖ = 5/49

√
9 + 4 + 36 = 5/7, v3 = 1/7 [−3, 2, 6]>.
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10.1.2 Matrix interpretation

Let A be a m × n matrix, with m ≥ n, and let u1, . . . , un ∈ Rm denote its columns. The
Gram–Schmidt algorithm produces orthonormal vectors v1, . . . , vn ∈ Rm such that, for each
j ∈ J1, nK,

(10.1) uj =
j∑

k=1

tk,j vk =
n∑

k=1

tk,j vk,

with tk,j = 0 for k > j, in other words, T = [ti,j ]ni,j=1 is an n×n upper triangular matrix. The
n equations (10.1) reduce, in matrix form, to A = BT , where B is the m × n matrix whose
columns are the orthonormal vectors v1, . . . , vn. To explain the other factorization, let us
complete v1, . . . , vn with vm+1, . . . , vn to form an orthonormal basis (v1, . . . , vm) of Rm. The
analogs of the equations (10.1), i.e. uj =

∑m
k=1 rk,j vk with rk,j = 0 for k > j, read A = QR,

where Q is the m×m orthogonal matrix with columns v1, . . . , vm and R is an m× n upper
triangular matrix.

To illustrate this point, observe that the orthonormalization carried out in Section 10.1.1
translates into the factorization [identify all the entries]6 6 1

3 6 1
2 1 1

 =
1
7

6 −2 −3
3 6 2
2 −3 6


︸ ︷︷ ︸

orthogonal

7 8 11/7
0 3 1/7
0 0 5/7


︸ ︷︷ ︸

upper triangular

.

10.2 Other methods

The Gram–Schmidt algorithm has the disadvantage that small imprecisions in the calcula-
tion of inner products accumulate quickly and lead to effective loss of orthogonality. Alter-
native ways to obtain a QR-factorization are presented below on some examples. They are
based on the following idea and exploits the fact that the computed product of orthogonal
matrices gives, with acceptable error, an orthogonal matrix.

Multiply the matrix A on the left by some orthogonal matrices Qi which ‘eliminate’ some
entries below the main ‘diagonal’, until the result is an upper triangular matrix R, thus

Qk · · ·Q2Q1A = R yields A = QR, with Q = Q>1 Q
>
2 · · ·Q>k .
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We mainly know two types of orthogonal transformations, namely rotations and reflexions.
Therefore, the two methods we describe are associated with Givens rotations [preferred
when A is sparse] and Householder reflections [preferred when A is dense].

10.2.1 Givens rotations

The matrix

Ω[i,j] :=



. . . i j

1
... 0

... 0
i · · · cos θ · · · sin θ · · ·

0
... . . . ... 0

j · · · − sin θ · · · cos θ · · ·

0
... 0

... 1
. . .


corresponds to a rotation along the two-dimensional space span[ei, ej ]. The rows of the ma-
trix Ω[i,j]A are the same as the rows of A, except for the i-th and j-th rows, which are linear
combinations of the i-th and j-th rows of A. By choosing θ appropriately, we may intro-
duce a zero at a prescribed position on one of these rows. Consider for example the matrix

A =

6 6 1
3 6 1
2 1 1

 of the end of Section 10.1.2. We pick Ω[1,2] so that Ω[1,2]A =

6 6 1
0 × ×
× × ×

.

Then we pick Ω[1,3] so that Ω[1,3]Ω[1,2]A =

× × ×
0 × ×
0 × ×

. Finally, thanks to the leading zeros

in the second and third rows, we can pick Ω[2,3] so that Ω[2,3]Ω[1,3]Ω[1,2]A =

× × ×
0 × ×
0 0 ×

 . The

matrix
[
Ω[2,3]Ω[1,3]Ω[1,2]

]> is the orthogonal matrix required in the factorization of A.

10.2.2 Householder reflections

The reflection in the direction of a vector v transformes v into −v while leaving the space
v> unchanged. It can therefore be expressed through the symmetric orthogonal matrix

Hv := I − 2
‖v‖2

vv>.
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Consider the matrix A =

6 6 1
3 6 1
2 1 1

 once again. We may transform u1 = [6, 3, 2]> into

7e1 = [7, 0, 0]> by way of the reflection in the direction v1 = u1− 7e1 = [−1, 3, 2]>. The latter
is represented by the matrix

Hv1 = I − 2
‖v1‖2

v1v
>
1 = I − 1

7

 1 −3 −2
−3 9 6
−2 6 4

 =
1
7

6 3 2
3 −2 −6
2 −6 3

 .

Then the matrixHv1A has the form

7 × ×
0 × ×
0 × ×

, where the precise expression for the second

column is

Hv1u2 = u2 −
〈v1, u2〉

7
v1 = u2 − 2v1 =

 8
0
−3

 .
To cut the argument short, we may observe at this point that the multiplication of Hv1A

on the left by the permutation matrix P =

1 0 0
0 0 1
0 1 0

 [which can be interpreted as He2−e3]

exchanges the second and third rows, thus gives an upper triangular matrix. In conclusion,
the orthogonal matrix Q has been obtained as

H>v1
P> = Hv1P =

6 2 3
3 −6 −2
2 3 −6

 .

10.3 Exercises

1. Fill in the numerical details in Section 10.2.1.

2. Implement and test the code for the Gram–Schmidt process. Based on this, implement
and test a code producing the QR-factorization of a square matrix.
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Chapter 11

Linear least-squares problems

11.1 Statement of the problem

Consider the linear system Ax = b, where A is an m × n matrix and b is a vector in Rm.
If m < n, we could add some artificial equations to make the system square. We shall
therefore suppose from now on that m ≥ n, and we also assume for simplicity that rkA = n.
When m > n, the equation Ax = b has in general no solution, nonetheless we will try to
‘make Ax as close to b as possible’. Hence we are looking at the minimization of ‖b − Ax‖,
the Euclidean norm of the residual vector. This is the least-squares problem. There is a
simple characterization of the minimizing vector.

Theorem 11.1. The following equivalence holds

[‖b−Ax∗‖ = min
x∈Rn

‖b−Ax‖] ⇐⇒ [A>(Ax∗ − b) = 0].

Proof. According to the next lemma, used with V = ImA, we see that x∗ is characterized
by b − Ax∗ ⊥ ImA, i.e. 0 = 〈b − Ax∗, Ax〉 = 〈A>(b − Ax∗), x〉 for all x ∈ Rm, implying that
A>(b−Ax∗) = 0.

Lemma 11.2. If V is a subspace of Rd and if c ∈ Rd, then

[‖c− v∗‖ = min
v∈V
‖c− v‖] ⇐⇒ c− v∗ ⊥ V.

As a picture is worth thousands words, no formal proof is given.
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11.2 Solution of the problem

It is possible to find the optimal x∗ by solving the so-called normal equations, that is
A>Ax∗ = A>b. We could use Cholesky factorization for instance, or even the conjugate
gradient method [check this last claim]. Another option is to use a QR-factorization of A.
Remember that the m×m orthogonal matrix Q preserves the Euclidean norm, hence

‖b−Ax‖ = ‖QQ>b−QRx‖ = ‖c−Rx‖, where c := Q>b.

We may write

c =

[
c1

c2

]
and Rx =

[
U

0

]
x =

[
Ux

0

]
, so that c−Rx =

[
c1 − Ux
c2

]
.

Observe that rkU = rkR = rkA = n, meaning that U is nonsingular, which clearly yields
the value

min
x∈Rn

‖c−Rx‖ = ‖c2‖, achieved for x∗ = U−1c1.

Note that x∗ can easily be computed by backward substitution.

11.3 Exercises

1. Find the least-squares solution to the system3 2
2 3
1 2

[x
y

]
=

3
0
1

 .
2. Suppose that the solution to the previous problem is given to you as [29/21,−2/3]>. How

can this be verified without solving for x and y.
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Part III

Solving nonlinear equations
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Chapter 12

Bisection method

We now turn our attention to the determination of the roots of a [nonlinear] equation, or,
to say things differently, to the determination of the zeros of a function. Note that any
equation g(x) = h(x) can indeed be written in the form f(x) = 0, with f := g − h. In the
theory of diffraction of light, for instance, one has to deal with the equation x = tanx; in
the calculation of planetary orbits, we need the roots of Kepler’s equation x− a sinx = b for
various values of a and b. Usually, an explicit expression for the solution cannot be obtained
and one has to resort to numerical computations. We describe here how the bisection
method achieves this specific goal.

12.1 Description of the method

The bisection method may also be referred to as the method of interval halving, since it
follows the simple strategy:

For a function f changing sign on the interval [a, b], choose between the left and right half-
intervals one that supplies a change of sign for f [hence a zero], and repeat the process
with this new interval.

Note that each of the two half-intervals may contain a zero of f , and that in general the
function f have several zeros, but our process only produces one of them. Remark also that
the method implicitely requires the function f to be continuous [forcing us to be cautious
with the equation x = tanx]. Since sgnf(a) 6= sgnf(b), we must have either sgnf(c) 6=
sgnf(a) or sgnf(c) 6= sgnf(b), where c denotes e.g. the midpoint of [a, b], thus it is the
intermediate value theorem which insures the existence of a zero of f in [a, c] or in [c, b].
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To avoid unnecessary evaluations of functions, any value needed in the code should be
stored rather than recomputed. Besides, to save multiplications, the test sgnf(a) 6= sgnf(c)
is preferable to the test f(a)f(b) < 0. A primitive pseudocode can be written as

input f , a, b, Nmax, ε
fa← f(a), fb← f(b), e← b− a
if sgnfa = sgnfb then output a, fa, b, fb, ‘same sign for the function at a and b’ end if
for n = 0 to Nmax

do e← e/2, c← a+ e, fc← f(c)
if fc < ε then output n, c, fc, e end if
if sgnfa 6= sgnfc then b← c, fb← fc

else a← c, fa← fc end if
end for

12.2 Convergence analysis

We now investigate the accuracy of the bisection method by estimating how close the final
point c is to a zero of the function f [evaluating how close f(c) is to zero constitutes a
different matter]. Let us denote by [a0, b0], [a1, b1], and so on, the intervals arising in the
bisection process. Clearly, the sequence (an) is increasing and bounded above by b, and
the sequence (bn) is decreasing and bounded below by a, so both sequences must converge.
Furthermore, the lengths of the successive intervals satisfy bn−an = (bn−1−an−1)/2, hence
bn − an = (b− a)/2n, and the limits of an and bn must have the same value, say r. Then the
inequalities f(an)f(bn) ≤ 0 and the continuity of f imply that f(r)2 ≤ 0, thus f(r) = 0, i.e r
is a zero of f . For each n, the point r lies in the interval [an, bn], so that

|r − cn| ≤
1
2
(bn − an) ≤ 1

2n+1
(b− a), where cn :=

an + bn
2

.

The following summary of the situation may be formulated.

Theorem 12.1. If the bisection algorithm is applied to a continuous function on an interval
[a, b] where f(a)f(b) < 0, then an approximate root is computed after n steps with error at
most (b− a)/2n+1.

If the error tolerance is prescribed at the start, we can determine in advance how many
steps suffice to achieve this tolerance. Indeed, to insure that |r − cn| < ε, it is enough to

impose (b− a)/2n+1 < ε, i.e. n > log2

(
b− a
2ε

)
= ln

(
b− a
2ε

)
/ ln 2.
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12.3 Exercises

From the textbook: 5, 10 p 51; 13, 15, 19 p 51.

• Write a program to find a zero of a function f in the following way: at each step, an
interval [a, b] is given and f(a)f(b) < 0; next c is computed as the zero of the linear
function that agrees with f at a and b; then either [a, c] or [c, b] is retained, depending on
whether f(a)f(c) < 0 or f(c)f(b) < 0. Test the program on several functions.
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Chapter 13

Newton’s method
Newton’s method is another very popular numerical root-finding technique. It can be
applied in many diverse situations. When specialized to real function of a real variable, it
is often called Newton–Raphson iteration.

13.1 Description of the method

We start with some preliminary guess work. Suppose that r is a zero of a function f and
that x = r + h is an approximation to r. When x is close to r, Taylor’s theorem allows us to
write

0 = f(r) = f(x− h) = f(x)− hf ′(x) +O(h2) ≈ f(x)− hf ′(x).

Solving in h gives h ≈ f(x)/f ′(x). We therefore expect x− f(x)/f ′(x) to be a better approx-
imation to r than x was. This is the core of Newton’s method:

Construct a sequence (xn) recursively, starting with an initial estimate x0 for a zero of f ,
and apply the iteration formula

(13.1) xn+1 = xn −
f(xn)
f ′(xn)

.

Assuming convergence of this sequence to a number r, we obtain r = r − f(r)/f ′(r) by
taking the limit as n → ∞, thus f(r) = 0. As hoped for, the algorithm produces a zero of
f . Note that a few precautions have to be taken for this conclusion to be legitimate: we
need f and f ′ to be continuous, as well as f ′(r) 6= 0. Theorem 13.3 has a slighty stronger
set of hypotheses that insures the convergence of the scheme, provided that we start with
x0 ‘close enough’ to a zero of f . This latter restriction is one of the weak point of the
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method and it cannot be lifted. As a matter of fact, from the graphical interpretation of the
method, it is not too hard to devise cases where Newton iteration will fail. For instance,
the function f(x) = sgn(x)

√
|x| yields a cycle of period 2 for any choice of x0 6= 0 [i.e.

x0 = x2 = x4 = · · · and x1 = x3 = x5 = · · · ]. The above mentioned graphical interpretation
of the method is nothing more than the observation that xn+1 is obtained as the intersection
of the x-axis with the tangent line to the f -curve at xn. Indeed, (13.1) may be rewritten as
f(xn) + f ′(xn)(xn+1 − xn) = 0.

As an example, here is a method often used to compute the square root of a number y > 0.
We want to solve f(x) := x2 − y = 0, so we perform the iterations

xn+1 = xn −
f(xn)
f ′(xn)

, that is xn+1 =
1
2

(
xn +

y

xn

)
.

This formula is very old [dated between 100 B.C. and 100 A.D., credited to Heron, a Greek
engineer and architect], yet very efficient. The value given for

√
17 after 4 iterations, start-

ing with x0 = 4, is correct to 28 figures.

We end this section with a pseudocode which includes stopping criteria. Note that we
would need subprograms for f(x) and f ′(x).

input a, M , δ, ε
v ← f(a)
output 0, a, v
if |v| < ε then stop end if
for k = 1 to M do

b← a− v/f ′(a), v ← f(b)
output k, b, v
if |b− a| < δ or |v| < ε then stop end if
a← b

end do end for
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13.2 Convergence analysis

The analysis will be carried out in the framework of discrete dynamical systems. This
merely involves iterations of the type

xn+1 = F (xn), where F is a continuous function mapping its domain into itself.

Since x1 = F (x0), x2 = F (x1) = F (F (x0)), and so on, we often use the convenient notation
xn = Fn(x0). One simply take F (x) = x − f(x)/f ′(x) for Newton’s method, in which case
a zero of f is recognized as a fixed point of F , i.e. a point r for which F (r) = r. Here are
some general convergence theorems in this setting.

Theorem 13.1. Suppose that F is a continuous function from [a, b] into [a, b]. Then F has
a fixed point in [a, b]. Suppose in addition that F is continuously differentiable on [a, b] – in
short, that F ∈ C1[a, b]. If there is a constant 0 ≤ c < 1 such that |F ′(x)| ≤ c for all x ∈ [a, b],
then the fixed point is unique. Moreover, the iterates xn = Fn(x0) converge towards this
unique fixed point r and the error en = xn − r satisfies |en+1| ≤ c |en|.

Proof. Consider the function G defined on [a, b] by G(x) := F (x) − x. We observe that
G(a) = F (a)− a ≥ a− a = 0 and that G(b) = F (b)− b ≤ b− b = 0. Thus, by the intermediate
value theorem, there is a point r ∈ [a, b] such that G(r) = 0, that is F (r) = r. Suppose now
that F ∈ C1[a, b] and that |F ′(x)| ≤ c < 1 for all x ∈ [a, b]. Assume that there are points r
and s such that F (r) = r and F (s) = s. We then use the mean value theorem to obtain

|r − s| = |F (r)− F (s)| ≤ c|r − s|.

This is only possible if |r − s| = 0, i.e. r = s. Uniqueness of the fixed point r is established.
We conclude the proof by writing

|en+1| = |xn+1 − r| = |F (xn)− F (r)| ≤ c|xn − r| = c |en|.

In particular, we get |en| ≤ cn |e0|, thus en → 0, i.e. xn → r.

Theorem 13.2. Let r be a fixed point of the function F ∈ C1[a, b]. If |F ′(r)| < 1, then r

is an attractive fixed point, in the sense that there exists δ > 0 such that the sequence
(Fn(x0)) converges to r for all x0 chosen in [r−δ, r+δ]. Moreover, the convergence is linear,
meaning that |xn+1 − r| ≤ c |xn − r| for some constant 0 ≤ c < 1.

Proof. Suppose that |F ′(r)| < 1. Then, by continuity of F ′ there exists δ > 0 such that
|F ′(x)| ≤ (|F ′(r)|+ 1)/2 =: c < 1 for all x ∈ [r − δ, r + δ]. Note that F maps [r − δ, r + δ] into
itself, so that the previous theorem applies.
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It is instructive to illustrate this phenomenon on the graph of the function F .

At this stage, one could already show that Newton’s method converges at a linear rate,
provided that the starting point is ‘close enough’ to a zero r of f . There is actually more to
it, which comes as no surprise if F ′(r) is explicitely computed. We get

F ′(r) =
d

dx

[
x− f(x)

f ′(x)

]
|x=r

=
[
1− f ′(x)f ′(x)− f ′′(x)f(x)

f ′(x)2

]
|x=r

= 1− (1− 0) = 0.

Theorem 13.3. Suppose that f belongs to C2[a, b] and that r is a simple zero of f [i.e.
f(r) = 0, f ′(r) 6= 0]. Then there exists δ > 0 such that, for any x0 ∈ [r − δ, r + δ], the
sequence defined by (13.1) converges to r. Moreover, the convergence is quadratic, in the
sense that the error en = xn − r satisfies |en+1| ≤ C e2n for some constant C.

Proof. We already know that the sequence (xn) lies in [r − δ, r + δ] for some δ > 0. We may,
if necessary, decrease the value of δ to insure the continuity of f ′′ and 1/f ′ on [r − δ, r + δ],
and we set D := max

x∈[r−δ,r+δ]
|f ′′(x)| and d := min

x∈[r−δ,r+δ]
|f ′(x)|. We may also redude δ so that

C :=
D

2d
<

1
δ

. We then write

en+1 = xn+1 − r = xn −
f(xn)
f ′(xn)

− r = − 1
f ′(xn)

[
f(xn) + (r − xn)f ′(xn)

]
= − 1

f ′(xn)
[
f(r)− 1

2
f ′′(yn)(r − xn)2

]
for some yn between r and xn,

and we obtain
|en+1| =

1
2
|f ′′(yn)|
|f ′(xn)|

e2n ≤
D

2d
e2n = C e2n.

This establishes the quadratic convergence.
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13.3 Generalized setting

The same strategy [linearize and solve] may be used to find numerical solutions of systems
of nonlinear equations. Let us illustrate this point with the system{

f1(x1, x2) = 0,
f2(x1, x2) = 0.

If an approximation (x1, x2) = (r1 + h1, r2 + h2) is close to a solution (r1, r2) of this system,
Taylor expansion in two variables reads

0 = f1(x1 − h1, x2 − h2) ≈ f1(x1, x2)− h1
∂f1

∂x1
(x1, x2)− h2

∂f1

∂x2
(x1, x2),

0 = f2(x1 − h1, x2 − h2) ≈ f2(x1, x2)− h1
∂f2

∂x1
(x1, x2)− h2

∂f2

∂x2
(x1, x2).

We solve this 2 × 2 system of linear equations with unknowns (h1, h2), in the expectation
that (x1−h1, x2−h2) provides a better approximation to (r1, r2). Introducing the Jacobian
matrix of f1 and f2,

J :=


∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

 ,
Newton’s method is merely the construction of a sequence (x(n)

1 , x
(n)
2 ) according to[

x
(n+1)
1

x
(n+1)
2

]
=

[
x

(n)
1

x
(n)
2

]
−
[
J(x(n)

1 , x
(n)
2 )
]−1

[
f1(x

(n)
1 , x

(n)
2 )

f2(x
(n)
1 , x

(n)
2 )

]
.

Clearly, one can deal with larger systems following this very model. It will be convenient
to use a matrix-vector formalism in this situation: express the system as F (X) = 0, with
F = [f1, . . . , fn]> and X = [x1, . . . , xn]>; linearize in the form F (X +H) ≈ F (X) + F ′(X)H,
where F ′(X) represents an n× n Jacobian matrix. Of course, the n× n linear systems will
be solved by using the methods already studied, not by determining inverses.

13.4 Exercises

From the textbook: 7 p 61; 18, 19 p 62; 2, 6.b.d.f p 71; 25, 27 p 73.
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1. Fill in the details of the proofs in Section 13.2.

2. Let Newton’s method be used on f(x) = x2 − y, y > 0. Show that if xn has k correct
digits after the decimal point, then xn+1 will have at least 2k − 1 correct digits after the
decimal point, provided that y > 0.0006.

3. What is the purpose of the iteration xn+1 = 2xn − x2
ny ? Identify it as the Newton

iteration of a certain function.

4. The polynomial x3 +94x2−389x+294 has zeros at 1, 3, and −98. The point x0 = 2 should
be a good starting point for computing one of the small zeros by Newton iteration. Is it
really the case?

Optional problems

From the textbook: 34 p 74.

1. Steffensen’s method follows the iteration formula

xn+1 = xn −
f(xn)
g(xn)

. where g(x) :=
f(x+ f(x)) − f(x)

f(x)
.

Show that it is quadratically convergent, under suitable hypotheses. Program this
method. Compare it with Newton’s method, e.g. to solve the equation x3 + 3x = 5x2 + 7
in 10 steps, starting at x0 = 5.
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Chapter 14

Secant method
14.1 Description of the method

One of the drawbacks of Newton’s method is that it necessitates the computation of the
derivative of a function. To overcome this difficulty, we can approximate f ′(xn) appearing
in the iteration formula by a quantity which is easier to compute. We can think of using

f ′(xn) ≈ f(xn)− f(xn−1)
xn − xn−1

.

The resulting algorithm is called the secant method. It is based on the iteration formula

xn+1 = xn −
f(xn) (xn − xn−1)
f(xn)− f(xn−1)

,

which requires two initial points x0 and x1 to be set off. However, only one new evaluation
of f is necessary at each step. The graphical interpretation for the secant method does not
differ much from the one for Newton’s method – simply replace ‘tangent line’ by ‘secant
line’.
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The pseudocode for the secant method follows the one for Newton’s method without too
much modifications.

input a, b, M , δ, ε
u← f(a), output 0, a, u
if |u| < ε then stop end if
v ← f(b), output 1, b, v
if |v| < ε then stop end if
for k = 2 to M do

s← (b− a)/(v − u), a← b, u← v,
b← b− vs, v ← f(b)
output k, b, v
if |a− b| < δ or |v| < ε then stop end if

end do end for

14.2 Convergence analysis

The error analysis that we present, although somehow lacking rigor, provides the rate of
convergence for the secant method. The error at the (n+ 1)-st step is estimated by

en+1 = xn+1 − r = xn −
f(xn)(xn − xn−1)
f(xn)− f(xn−1)

− r

=
f(xn)(xn−1 − r)− f(xn−1)(xn − r)

f(xn)− f(xn−1)
= en en−1

f(xn)/en − f(xn−1)/en−1

f(xn)− f(xn−1)

≈ en en−1
[f(r) + f ′(r)en + f ′′(r)/2 e2n]/en − [f(r) + f ′(r)en−1 + f ′′(r)/2 e2n−1]/en−1

[f(r) + f ′(r)en]− [f(r) + f ′(r)en−1]

≈ en en−1
f ′′(r)/2 (en − en−1)
f ′(r)(en − en−1)

.

Thus, we have obtained

en+1 ≈ C en en−1, where C :=
f ′′(r)
2f ′(r)

.

We postulate [informed guess, see Chapter 24] the relation |en+1| ∼ A|en|α. This can also
be written as |en| ∼ A−1/α|en+1|1/α, which we use with n replaced by n− 1 to derive

A|en|α ∼ CA−1/α|en|1+1/α.
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We should therefore have α = 1 + 1/α, or α =
1 +
√

5
2

≈ 1.62. We should also have A =

C1/(1+1/α) = C1/α = Cα−1 ≈
[
f ′′(r)
2f ′(r)

]0.62

. Finally, with A thus given, we have established

|en+1| ≈ A |en|(1+
√

5)/2.

The rate of convergence of the secant method is seen to be superlinear, which is better
than the bisection method [linear rate], but not as good of Newton’s method [quadratic
rate]. However, each step of the secant method requires only one new function evaluation,
instead of two for Newton’s method. Hence, it is more appropriate to compare a pair of
steps of the former with one step of the latter. In this case, we get

|en+2| ∼ A|en+1|α ∼ A1+α|en|α
2

= Cα|en|α+1 ≈ C1.62|en|2.62,

which now appears better than the quadratic convergence of Newton’s method.

14.3 Exercises

From the textbook: 8.b.d.f. p 71; 17.b.c. p 72.

1. If xn+1 = xn+(2−exn)(xn−xn−1)/(exn−exn−1) with x0 = 0 and x1 = 1, what is limn→∞ xn?
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Part IV

Approximation of functions
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Chapter 15

Polynomial interpolation

15.1 The interpolation problem

Consider some points x0 < x1 < · · · < xn and some data values y0, y1, . . . , yn. We seek a
function f , called an interpolant of y0, y1, . . . , yn at x0, x1, . . . , xn, which satisfies

f(xi) = yi, i ∈ J0, nK.

This means that the f -curve intercept the n + 1 points (x0, y0), (x1, y1), . . . , (xn, yn). Since
we prescribe n+ 1 conditions, we should allow n+ 1 degrees of freedom for the function f ,
and it should also be a ‘simple’ function. Hence, we will seek f in the linear space

Pn := {p : p is a polynomial of degree ≤ n}.

In this situation, finding an interpolant is always possible.

Theorem 15.1. Fix x0 < x1 < · · · < xn. For any values y0, y1, . . . , yn, there exists a unique
polynomial of degree at most n that interpolates y0, y1, . . . , yn at x0, x1, . . . , xn – in short,

∃ ! p ∈ Pn : p(xi) = yi, i ∈ J0, nK.

Proof. Define the linear map

T : p ∈ Pn 7→
(
p(x0), p(x1), . . . , p(xn)

)
∈ Rn+1.

Our aim is to prove that T is bijective [check this claim]. Since dimPn = dim Rn+1 = n+ 1,
it is enough to show either that T is surjective, or that T is injective. To prove the latter,
consider p ∈ kerT . The polynomial p, of degree at most n, possesses n + 1 zeros, hence it
must be the zero polynomial. This establishes the injectivity.
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15.2 The Lagrange form of the polynomial interpolant

The previous argument is of no practical use, for it provides neither an explicit expression
for the interpolant nor an algorithm to compute it. Note, however, that for each i ∈ J0, nK,
there is a unique polynomial `i ∈ Pn, called i-th Lagrange cardinal polynomial relative
to x0, x1, . . . , xn, such that

`i(xj) = 0 for i 6= j, and `i(xi) = 1.

One readily checks that the interpolant of y0, y1, . . . , yn at x0, x1, . . . , xn takes the form

p(x) = y0`0(x) + y1`1(x) + · · · + yn`n(x) =
n∑

i=0

yi`i(x).

An explicit expression for the Lagrange cardinal polynomial is given by

`i(x) =
(x− x0) · · · (x − xi−1)(x − xi+1) · · · (x − xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
=

n∏
j=0, j 6=i

x − xj

xi − xj
.

Given a function f , we will say that a polynomial p of degree at most n interpolates f at
x0, x1, . . . , xn if it interpolates the value f(x0), f(x1), . . . , f(xn) at x0, x1, . . . , xn. Observe
that it can be written as p =

∑
i f(xi)`i. In particular, since a polynomial of degree at most

n is its own interpolant at x0, x1, . . . , xn, we have the representation

p =
n∑

i=0

p(xi)`i for any p ∈ Pn.

As an example, we may write 2x2 − 1 =
x(x− 1)

2
+ (x− 1)(x+ 1) +

(x+ 1)x
2

.

15.3 The error in polynomial interpolation

Suppose that only a sample y0 = f(x0), y1 = f(x1), . . . , yn = f(xn) of values of a function f

are known. In order to manipulate f , we often approximate it by its polynomial interpolant.
The interpolant, depending only on the finite data set, cannot provide a good approximant
for all the functions that intercept the points (x0, y0), . . . , (xn, yn). Nevertheless, if the
function f is ‘nice enough’, the error can be kept under control.

Theorem 15.2. Let f ∈ Cn+1[a, b] – f is n+ 1 times differentiable and f (n+1) is continuous
– and let p ∈ Pn be the interpolant of f at x0, . . . , xn ∈ [a, b]. For each x ∈ [a, b], there exists
ξ ∈ [a, b] – depending on x – such that

(15.1) f(x)− p(x) =
1

(n+ 1)!
f (n+1)(ξ)

n∏
i=0

(x− xi).
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Proof. Formula (15.1) is obvious if x is one of the xi’s. Suppose now that x ∈ [a, b] is distinct
from all the xi’s, and consider it as a fixed parameter. Then the function Φ defined by

Φ(t) := [f(t)− p(t)]
n∏

i=0

(x− xi) − [f(x)− p(x)]
n∏

i=0

(t− xi)

vanishes [i.e. equals zero] at the n + 2 distinct points x, x0, . . . , xn. Then, using Rolle’s
theorem, we derive that Φ′ vanishes at n+1 distinct points [at least]. Using Rolle’s theorem
once more, we see that Φ′′ vanishes at n distinct points. Continuing in this fashion, we
deduce that Φ(n+1) vanishes at a point ξ ∈ [a, b]. Note that

0 = Φ(n+1)(ξ) = [f (n+1)(ξ)− p(n+1)(ξ)]
n∏

i=0

(x− xi) − [f(x)− p(x)] d
n+1

dtn+1

(
n∏

i=0

(t− xi)

)
|t=ξ

.

In view of p(n+1) ≡ 0 and of
dn+1

dtn+1

(∏n
i=0(t− xi)

)
=

dn+1

dtn+1

(
tn+1 + {degree ≤ n}

)
= (n+ 1)!,

this implies that

0 = f (n+1)(ξ)
n∏

i=0

(x− xi) − [f(x)− p(x)] (n+ 1)!,

which is just another way of writing (15.1). This proof is now complete. Another one will
be given in the next chapter.

A natural way to represent a polynomial of degree at most n is

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

The interpolation conditions p(xi) = yi, i ∈ J0, nK, translates into the linear system
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

... · · ·
...

1 xn x2
n · · · xn

n



a0

a1

...
an

 =


y0

y1

...
yn

 ,
whose unknowns are a0, a1, . . . , an. This system is always solvable, as we have seen, hence
the coefficient matrix – called a Vandermonde matrix – is nonsingular. Its determinant
is therefore nonzero [provided that the xi’s are distinct] and can in fact be determined
explicitely. However, finding a polynomial interpolant using this approach is not recom-
mended.
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15.4 Exercises

From the textbook: 12, 13 p 116.

1. Prove that
n∑

i=0

`i(x) = 1 for all x.

2. Suppose that the function values f(0), f(1), f(2) and f(3) are given. We wish to esti-

mate f(6), f ′(0) and
∫ 3

0
f(x)dx by employing the approximants p(6), p′(0) and

∫ 3

0
p(x)dx,

where p is the cubic polynomial interpolating f at 0, 1, 2, and 3. Deduce from the La-
grange formula that each approximant is a linear combination of the four data with
coefficients independent of f . Calculate the numerical values of the coefficients. Verify
your work by showing that the approximants are exact when f is an arbitrary cubic
polynomial.

3. Let f be a function in C4[0, 1] and let p be a cubic polynomial satisfying p(0) = f(0),
p′(0) = f ′(0), p(1) = f(1), and p′(1) = f ′(1). Deduce from the Rolle’s theorem that for
every x ∈ [0, 1], there exists ξ ∈ [0, 1] such that

f(x)− p(x) =
1
24
x2(x− 1)2f (4)(ξ).

Optional problems

From the textbook: 33 p118.

1. Let a, b and c be distinct real numbers [not necessarily in ascending order], and let
f(a), f(b), f ′(a), f ′(b) and f ′(c) be given. Because there are five data, one might try
to approximate f by a polynomial of degree at most four that interpolates the data.
Prove by a general argument that this interpolation problem has a solution and the
solution is unique if and only if there is no nonzero polynomial p ∈ P4 that satisfies
p(a) = p(b) = p′(a) = p′(b) = p′(c) = 0. Hence, given a and b, show that there exists a
unique value c 6= a, b such that there is no unique solution.

2. Try to find the explicit expression for the determinant of a Vandermonde matrix.
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Chapter 16

Divided differences
16.1 A definition

Given distinct points x0, x1, . . . , xn and given a function f , the divided difference of f at
x0, x1, . . . , xn is defined to be the coefficient of xn in the polynomial p ∈ Pn interpolating f
at x0, x1, . . . , xn. It is denoted by [x0, . . . , xn]f – or by f [x0, . . . , xn] in many texts. Lagrange
formula can be called upon to derive the representation [check it]

[x0, . . . , xn]f =
n∑

i=0

f(xi)
n∏

j=0, j 6=i

1
xi − xj

.

However, this expression is rarely used in practice, since divided differences can be calcu-
lated in a more efficient way – see Section 16.2. We may already observe that

[x0]f = f(x0)

[x0, x1]f =
f(x1)− f(x0)

x1 − x0
.

Note that, when x1 is close to x0, the divided difference [x0, x1]f approximate f ′(x0). In
fact, we show that higher derivatives can also be approximated by divided differences,
which present the advantage of being easily computed – see Section 16.2.

Theorem 16.1. Let f ∈ Cn[a, b] and let x0, x1, . . . , xn be distinct points in [a, b]. There
exists a point ξ between the smallest and the largest of the xi’s such that

[x0, . . . , xn]f =
1
n!
f (n)(ξ).

Proof. Let p ∈ Pn be the polynomial interpolating f at the points x0, x1, . . . , xn. The error
f − p has n + 1 zeros in [mini xi,maxi xi]. We apply Rolle’s theorem n times to deduce that
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f (n) − p(n) has a zero ξ in [mini xi,maxi xi], thus f (n)(ξ) = p(n)(ξ). It remains to remark that
p(n)(ξ) = n! [x0, . . . , xn]f , since p(x) = [x0, . . . , xn]f xn + {degree < n}.

If we combine this theorem with the next one, we obtain the alternative proof of Theorem
15.2 previously mentioned.

Theorem 16.2. For a function f , let p ∈ Pn be the interpolant of f at the distinct points
x0, x1, . . . , xn. If x is not one of the xi’s, then

f(x)− p(x) = [x0, . . . , xn, x]f
n∏

i=0

(x− xi).

Proof. Let q ∈ Pn+1 be the interpolant of f at the points x0, x1, . . . , xn, and x. Note that
the difference q−p is a polynomial of degree at most n+1 which vanishes at x0, x1, . . . , xn.
It is therefore of the type

(16.1) q(t)− p(t) = c

n∏
i=0

(t− xi), for some constant c.

Identifying the coefficients of tn+1, we obtain c = [x0, . . . , xn, x]f . It now remains to write
(16.1) for t = x, keeping in mind that q(x) = f(x).

16.2 Recurrence relation

The recursive method we are about describe allows for fast computation of divided differ-
ences [and also accounts for their names].

Theorem 16.3. Given distinct points x0, x1, . . . , xk, xk+1, there holds

[x0, x1, . . . , xk, xk+1]f =
[x1, . . . , xk, xk+1]f − [x0, x1, . . . , xk]f

xk+1 − x0
.

Proof. Let p, q ∈ Pk be the interpolant of f at x0, x1, . . . , xk and at x1, . . . , xk, xk+1, respec-
tively. Define the polynomial r ∈ Pk+1 by

(16.2) r(x) :=
1

xk+1 − x0

(
(x− x0)q(x) + (xk+1 − x)p(x)

)
.

It is easy to check that r(xi) = f(xi) for all i ∈ J0, k + 1K. Thus, the coefficient of xk+1 in
r equals [x0, . . . , xk+1]f . But, looking at the right-hand side of (16.2), we see that it also

equals
1

xk+1 − x0

(
[x1, . . . , xk, xk+1]f − [x0, x1, . . . , xk]f

)
.
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The evaluation of the divided difference table follows the diagram

f(x0) = [x0]f
↘

[x0, x1]f
↗ ↘

f(x1) = [x1]f [x0, x1, x2]f
↘ ↗ ↘

. . .
· · · ↘

... [x0, . . . , xn]f
· · · ↗

↗ ↘ ↗
f(xn−1) = [xn−1]f [xn−2, xn−1, xn]f

↘ ↗
[xn−1, xn]f

↗
f(xn) = [xn]f

16.3 The Newton form of the polynomial interpolant

To prove the existence of a polynomial p ∈ Pn interpolating f at x0, x1, . . . , xn, we could
have proceeded inductively. Indeed, if we have already computed a polynomial p ∈ Pk

interpolating f at x0, x1, . . . , xk, we can seek for a polynomial p ∈ Pk+1 interpolating f

at x0, x1, . . . , xk+1 in the form pk+1(x) = pk(x) + c (x − x0) · · · (x − xk). The constant c is
uniquely determined by the condition pk+1(xk+1) = f(xk+1). It can be expressed in terms of
divided differences. This is the process that lies beneath the Newton interpolation formula,
which is computationally more efficient than the Lagrange formula.

Theorem 16.4. The polynomial p ∈ Pn interpolating a function f at the distinct points
x0, x1, . . . , xn can be written as

p(x) = [x0]f + [x0, x1]f · (x− x0) + · · ·+ [x0, . . . , xn]f · (x− x0) · · · (x− xn−1)

=
n∑

k=0

[x0, . . . , xk]f
k−1∏
i=0

(x− xi).
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Proof. For each k ∈ J0, nK, let pk ∈ Pk be the interpolant of f at x0, x1, . . . , xk. Remark, as
in (16.1), that

pk+1(x)− pk(x) = ck (x− x0) · · · (x− xk), for some constant ck.

Looking at the coefficient of xk+1, we see that ck = [x0, . . . , xk+1]f . We then get

p(x) = p0(x) +
(
p1(x)− p0(x)

)
+ · · ·+

(
pn−1(x)− pn−2(x)

)
+
(
pn(x)− pn−1(x)

)
= f(x0) + c0 (x− x0) + · · ·+ cn−1 (x− x0) · · · (x− xn−1)

= [x0]f + [x0, x1]f · (x− x0) + · · ·+ [x0, . . . , xn]f · (x− x0) · · · (x− xn−1),

which is the required result.

The evaluation of p(x) should be performed using nested multiplication, i.e. according to
the scheme implied by the writing

p(x) = [x0]f +(x−x0)
{
[x0, x1]f +(x−x1)

{
[x0, x1, x2]f + · · ·+(x−xn−1)

{
[x0, . . . , xn]f

}
· · ·
}}
.

Observe that we only need the divided differences obtained in the top south–east diagonal
of the table. They can be computed via the following algorithm designed to use few storage
space. Start with a vector d = (d0, d1, . . . , dn) containing the values f(x0), f(x1), . . . , f(xn).
Note that d0 already provides the first desired coefficient. Then compute the second column
of the table, putting the corresponding divided differences in positions of d1, . . . , dn, so that
d1 provides the second desired coefficient. Continue in this pattern, being careful to store
the new elements in the bottom part of the vector d without disturbing its top part. Here
is the algorithm.

for k = 0 to n do dk ← f(xk) end do end for
for j = 1 to n do

for i = n downto j do
di ← (di − di−1)/(xi − xi−j)
end do end for

end do end for

Once this is done, we can use the following version of Horner’s algorithm to compute the
interpolant at the point x.

u← dn

for i = n− 1 downto 0 do
u← (x− xi)u+ di

end do end for
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16.4 Exercises

From the textbook: 17, 19 p 129.

1. Prove that if f is a polynomial of degree k, then [x0, . . . , xn]f = 0 for all n > k.

2. Find the Newton form of the cubic polynomial interpolating the data 63, 11, 7, and 28 at
the points 4, 2, 0, and 3.

Optional problem

1. Prove the Leibniz formula for divided differences, which reads

[x0, x1, . . . , xn](fg) =
n∑

k=0

[x0, . . . , xk]f · [xk, . . . , xn]g.
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Chapter 17

Orthogonal polynomials
17.1 Inner product

Let w be a weight function on [−1, 1], say, i.e.

w integrable on [−1, 1], continuous on (−1, 1), w(x) > 0 for all x ∈ [−1, 1] \ Z, Z a finite set.

The general expression

〈f, g〉 :=
∫ 1

−1
f(x)g(x)w(x)dx, f, g ∈ C[−1, 1],

defines an inner product on C[−1, 1], which means that it shares the key properties of
the usual inner product on Rn, namely

1. symmetry: for f, g ∈ C[−1, 1], there holds 〈f, g〉 = 〈g, f〉,

2. linearity: for f1, f2, g ∈ C[−1, 1], a, b ∈ R, there holds 〈af1 + bf2, g〉 = a〈f1, g〉+ b〈f2, g〉,

3. positivity: for f ∈ C[−1, 1], there holds 〈f, f〉 ≥ 0, with equality if and only if f = 0.

Let us justify the last statement, i.e. let us show that f = 0 as soon as f ∈ C[−1, 1] satisfies
〈f, f〉 = 0. The continuous function g := f2w is nonnegative and has an integral equal to
zero, hence must be identically zero. Therefore f(x) = 0 for all x ∈ [−1, 1] \ Z. But then,
since Z is a finite set, the continuity of f forces f to vanish on Z as well.

Note that the expression ‖f‖ :=
√
〈f, f〉 defines a norm on C[−1, 1].
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17.2 Orthogonal polynomials for a general weight

By analogy with more familiar inner products, we will say that two functions f and g are
orthogonal if 〈f, g〉 = 0. We are interested in a sequence (pn) of orthogonal polynomials of
degree n, in the sense that we require

deg pn = n, 〈pn, pm〉 = 0, n 6= m.

Note that pn should be orthogonal to all pm with m < n, hence to every p ∈ Pn−1. We call pn

‘the’ n-th orthogonal polynomial. It is only defined up to a multiplicative constant. To
define it uniquely, we need a normalization condition, e.g. we may require pn to be monic,
i.e. to have a leading coefficient equal to one.

Theorem 17.1. For every weight function w on [−1, 1], there exists a unique n-th monic
orthogonal polynomial.

Proof. Let us start by the uniqueness part. Consider two monic polynomials p and q which
are orthogonal to the space Pn−1. Then the difference p − q is also orthogonal to Pn−1. It
also belongs to Pn−1, which implies that p− q = 0, or p = q.
The existence part is proved by induction on n. For n = 0, we take p0 = 1. Then, for n ≥ 1,
suppose that p0, p1, . . . , pn−1 have been constructed, and let us construct pn. Inspired by the
Gram–Schmidt algorithm, we define

pn = q −
n−1∑
k=0

〈q, pk〉
〈pk, pk〉

pk, where q(x) := xn.

It is readily checked that pn ∈ Pn is monic and that 〈pn, pm〉 = 0 for all m < n. Hence pn is
indeed the n-th monic orthogonal polynomial. This concludes the induction.

As an example, we may consider the Chebyshev polynomials Tn defined by the relation
[in fact, that Tn is a polynomial of degree n is not apparent here]

Tn(cos θ) = cos(nθ), θ ∈ [0, π], or equivalently Tn(x) = cos(n arccos(x)), x ∈ [−1, 1].

They are orthogonal [but not monic] on [−1, 1] with respect to the weight w(x) =
1√

1− x2
,

as seen from∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=
x=cos θ

∫ π

0
Tn(cos θ)Tm(cos θ)

sin θdθ√
1− cos2 θ

=
∫ π

0
cos(nθ) cos(mθ)dθ

=
1
2

∫ π

0
[cos((n+m)θ) + cos((n−m)θ)] = 0 if n 6= m.

86



If one is adverse to trigonometric formulae, one can also integrate I :=
∫ π

0
cos(nθ) cos(mθ)dθ

by parts twice to obtain I = m2I/n2, thus I = 0 when n 6= m. Note that Tn has n zeros in
(−1, 1) and n+ 1 equioscillation points in [−1, 1], precisely

Tn

(
cos
((2n+ 1− 2k)π

2n

))
= 0, k ∈ J1, nK, Tn

(
cos
((n− k)π

n

))
= (−1)n−k, k ∈ J0, nK.

Other important examples of orthogonal polynomials include the Legendre polynomials,
which are orthogonal on [−1, 1] with respect to the weight w(x) = 1. They are defined by

Pn(x) =
1

2n n!
dn

dxn

[
(x2 − 1)n

]
.

One can check that this formula yields a polynomial of degree n, which is not monic but

normalized so that Pn(1) = 1. A direct calculation would give e.g. P2(x) =
3
2
x2 − 1

2
. It can

also be seen [Rolle’s theorem being involved] that Pn has n zeros in (−1, 1). This property
is shared by all n-th orthogomal polynomials, regardless of the weight w.

Theorem 17.2. Any n-th orthogonal polynomial has n distinct zeros inside (−1, 1).

Proof. Let p be a polynomial of degree n which is orthogonal to the space Pn−1. Denote by
x1, . . . , xm the zeros of p where p changes sign – hence the endpoints −1 and 1 are not taken
into account – and define q(x) = (x − x1) · · · (x − xm). Then the function p(x)q(x)w(x) does
not change sign on [−1, 1], so its integral cannot vanish. Thus q cannot be a polynomial of
degree ≤ n − 1, i.e. m = deg q ≥ n. We have shown that p has a least m zeros in (−1, 1),
hence it has exactly n zeros.

17.3 Three-term recurrence relation

For orthogonal polynomial to have any practical use, we need to be able to compute them.
The Gram–Schmidt process provides a way, of course, but we know that it is prone to loss
of accuracy. It turns out that a considerably better procedure is available.

Theorem 17.3. Monic orthogonal polynomials can be constucted recursively, according to

p−1(x) = 0, p0(x) = 1, and for n ≥ 0,

pn+1(x) = (x− αn)pn(x)− βnpn−1(x), with αn =
〈pn, xpn〉
〈pn, pn〉

and βn =
〈pn, pn〉
〈pn−1, pn−1〉

.
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Proof. The proper proof would be done by induction. Here we simply determine what
the recurrence relation must be like. Since the polynomial xpn(x) belongs to Pn+1, it has
[should have] an expansion of the form

(17.1) xpn = an+1pn+1 + anpn + an−1pn−1 + · · ·+ a0p0.

Note that an+1 must equal one for the leading coefficients on both sides to be the same. If
we take the inner product with pk for k < n− 1, we obtain

ak〈pk, pk〉 = 〈xpn, pk〉 = 〈pn, xpk︸︷︷︸
∈Pn−1

〉 = 0,

hence ak = 0, as expected. Now, taking the inner product with pn, we get

an〈pn, pn〉 = 〈xpn, pn〉, or an =
〈xpn, pn〉
〈pn, pn〉

.

Finally, taking the inner product with pn−1, we derive

an−1〈pn−1, pn−1〉 = 〈xpn, pn−1〉, or an−1 =
〈xpn, pn−1〉
〈pn−1, pn−1〉

=
〈pn, pn〉
〈pn−1, pn−1〉

.

This very last step follows from the expansion (17.1), when n is replaced by n − 1, by
observing that 〈xpn, pn−1〉 = 〈pn, xpn−1〉 = 〈pn, pn〉. The announced recurrence relation is
now simply a rewritting of the expansion of xpn.

For instance, the recurrence relation for Chebyshev polynomials reads

Tn+1(x) = 2xTn(x)− Tn−1(x).

It can actually be directly deduced from

Tn+1(cos θ) + Tn−1(cos θ) = cos((n+ 1)θ) + cos((n− 1)θ) = 2 cos(θ) cos(nθ).

By immediate induction, we then see that Tn is indeed a polynomial of degree n, whose
leading coefficient is 2n−1. The importance of Chebyshev polynomials becomes clear in
connection with Theorems 15.2 and 16.2 on the error in polynomial interpolation: the in-
terpolation points are somehow best chosen at the zeros of Tn+1.

Theorem 17.4. The monic polynomial T̃n :=
1

2n−1
Tn is the minimizer of the quantity

max
x∈[−1,1]

|p(x)| over all monic polynomials p ∈ Pn.
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Proof. Assume on the contrary that there is a monic polynomial p ∈ Pn such that

max
x∈[−1,1]

|p(x)| < max
x∈[−1,1]

|T̃n(x)| = 1
2n−1

.

In particular, at the points xk := cos
((n− k)π

n

)
, k ∈ J0, nK, one has

(−1)n−kp(xk) ≤ |p(xk)| <
1

2n−1
=

(−1)n−kTn(xk)
2n−1

= (−1)n−kT̃n(xk).

Thus, the polynomial p − T̃n changes sign at the n + 1 points x0, x1, . . . , xn. By Rolle’s
theorem, we deduce that p− T̃n has n zeros. Since p− T̃n is of degree at most n− 1, this is
of course impossible.

17.4 Least-squares polynomial approximation

Consider a function f ∈ C[−1, 1]. Instead of approximating it by its polynomial interpolant,
we may look for the best approximation to f from Pn, i.e. we aim to minimize ‖f − p‖
over all polynomials p ∈ Pn. As in Chapter 11, geometric intuition tells us how to choose p:
it should be the orthogonal projection of f on Pn.

Theorem 17.5. Let p0, p1, . . . , pn, deg pk = k, be orthogonal polynomials with respect to a
weight w. For a function f ∈ C[−1, 1], the polynomial minimizing ‖f − p‖ over all p ∈ Pn is

(17.2) pf :=
n∑

k=0

〈f, pk〉
〈pk, pk〉

pk.

Proof. Observe that, with pf thus defined, we have 〈pf , pi〉 = 〈f, pi〉 for all i ∈ J0, nK, hence
f − pf ⊥ Pn. Let now p be an arbitrary polynomial in Pn. We have

‖f − p‖2 = ‖(f − pf ) + (pf − p)‖2 = 〈(f − pf ) + (pf − p), (f − pf ) + (pf − p)〉

= ‖f − pf‖2 + ‖pf − p‖2 + 2〈f − pf , pf − p〉 = ‖f − pf‖2 + ‖pf − p‖2 ≥ ‖f − pf‖2,

with equality if and only if ‖pf − p‖ = 0, i.e. p = pf .

Note that the coefficient
〈f, pk〉
〈pk, pk〉

is computed independently of n. In practice, we continue

to add terms in the expansion (17.2) until ‖f − p‖2 is below a specified tolerance ε.

Remark. The arguments work so well here because the norm is euclidean, i.e. it is derived
from an inner product. The situation would be quite different with another norm.
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17.5 Exercises

From the textbook: 1.a.c.d., 3.a.c.d., 5.a.c.d. p 502; 8, 9 p 512.

1. Establish that Tn is odd, respectively even, whenever n is odd, respectively even.

2. Determine the three-term recurrence relation for the monic polynomials orthogonal on

[−1, 1] with respect to the weight w(x) =
1√

1− x2
.

3. Let P̃n be the Legendre polynomial of degree n, renormalized to be monic. Give an

expression for P̃n and prove that P̃n is the minimizer of
∫ 1

−1
p(x)2dx over all monic poly-

nomials p ∈ Pn.

Optional problems

1. The Chebyshev polynomial Un of the second kind satisfy

Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)
, θ ∈ [0, π].

Find a three-term recurrence relation and use it to justify that Un is a polynomial of
degree n. Prove that the system (Un) is orthogonal on [−1, 1] with respect to the weight
w(x) =

√
1− x2. Finally, find a relation between Un and Tn+1.
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Chapter 18

Trigonometric interpolation and
FFT

18.1 Approximation

To represent periodic phenomena, trigonometric functions will of course be more appro-
priate than algebraic polynomials. We will suppose for simplicity that the function to be
approximated or interpolated is 2π-periodic [meaning that 2π is a period, but not neces-
sarily the smallest one] and continuous – more briefly, f ∈ C2π. We denote by Tn the
space of trigonometric polynomials of degree at most n, i.e. the linear combinations of
1,cos(x), sin(x),cos(2x), sin(2x), . . . , cos(nx), sin(nx). Note that Tn is a subspace of C2π, i.e that
trigonometric polynomials are 2π-periodic continuous functions. Let us equip the space C2π

with the inner product [check that it is indeed a inner product]

〈f, g〉 =
1
2π

∫ π

−π
f(x)g(x)dx, f, g ∈ C2π.

Observe that the intergration could be carried out over any interval of length 2π, without
changing the value of the integral. We are on the look out for orthogonal bases for the
space Tn, and the most natural basis turns out to be one.

Theorem 18.1. With the [unusual] notations Ck and Sk for the functions

Ck(x) := cos(kx), Sk(x) := sin(kx),

the system [1, C1, S1, . . . , Cn, Sn] forms an orthogonal basis for Tn, and for k > 0, one has

〈Ck, Ck〉 = 〈Sk, Sk〉 =
1
2
.
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Proof. It is clear that 〈1, Ck〉 = 〈1, Sk〉 = 0 for k > 0. Furthemore, for indices k, h ∈ J1, nK, we
observe that 〈Ck, Sk〉 = 0, since the integrand CkSk is an odd function. Besides, integrations
by part yield∫ π

−π
cos(kx) cos(hx)dx =

h

k

∫ π

−π
sin(kx) sin(hx)dx =

h2

k2

∫ π

−π
cos(kx) cos(hx)dx,

hence, for k 6= h, there holds
∫ π

−π
cos(kx) cos(hx)dx = 0 and

∫ π

−π
sin(kx) sin(hx)dx = 0, thus

〈Ck, Ch〉 = 0 and 〈Sk, Sh〉 = 0. Finally, with k = h, we have∫ π

−π
cos2(kx)dx =

∫ π

−π
sin2(kx)dx,

and we get twice the value of the integral by summing its two expressions and using the

identity cos2 +sin2 = 1. It follows that 〈Ck, Ck〉 = 〈Sk, Sk〉 =
1
2

.

As usual, we may now express the best approximation to a function f from the space Tn as

(18.1) Sn(f) =
〈f, 1〉
〈1, 1〉

1 +
n∑

k=1

( 〈f, Ck〉
〈Ck, Ck〉

Ck +
〈f, Sk〉
〈Sk, Sk〉

Sk

)
.

In other words, with the Fourier coefficients of f defined by

ak :=
1
π

∫ π

−π
f(t) cos(kt)dt, bk :=

1
π

∫ π

−π
f(t) sin(kt)dt,

one has

Sn(f)(x) =
a0

2
+

n∑
k=1

(
ak cos(kx) + bk sin(kx)

)
.

This is the partial sum of the Fourier series of f . One of the basic theorems from Fourier
analysis states that, for a 2π-periodic continuously differentiable function f , its Fourier
series

a0

2
+
∞∑

k=1

(
ak cos(kx) + bk sin(kx)

)
converges uniformely to f , which means that

max
x∈[−π,π]

|f(x)− Sn(f)(x)| −→ 0 as n→∞.

In the case of a 2π-periodic function made of continuously differentiable pieces, the conver-

gence is weaker, in the sense that Sn(f)(x)→ f(x−) + f(x+)
2

for all x.
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18.2 Interpolation

Remark first of all that any trigonometric polynomial of the form

p(x) =
a0

2
+

n∑
k=1

(
ak cos(kx) + bk sin(kx)

)
can be alternatively represented as

p(x) =
n∑

k=−n

cke
ikx, where ck :=

1
2
(ak − ibk), c−k := ck, k ≥ 0.

It would be possible [and somewhat more elegant] to work with the latter form and express
the theory only in terms of complex exponentials – we will not do it, however. To justify the
second representation, we may write

p(x) =
a0

2
+

n∑
k=1

(
ak
eikx + e−ikx

2
+ bk

eikx − e−ikx

2i

)
=

a0

2
+

n∑
k=1

1
2
(ak − ibk)eikx +

n∑
k=1

1
2
(ak + ibk)e−ikx =

n∑
k=−n

cke
ikx.

The following lemma can now be establish using the previous remark.

Lemma 18.2. Any nonzero trigonometric polynomial in Tn has at most 2n zeros in [−π, π).

Proof. Suppose that 2n+1 points x0 < x1 < · · · < x2n in [−π, π) are zeros of a trigonometric
polynomial p(x) =

∑n
k=−n cke

ikx = e−inx
∑2n

k=0 cke
ikx. It follows that the 2n + 1 complex

numbers eix0 , . . . , eix2n are distinct zeros of the [algebraic] polynomial q(z) =
∑2n

k=0 ckz
k.

Since that latter is of degree at most 2n, this implies that q = 0, and in turn that p = 0.

An important consequence regarding trigonometric interpolation can now be derived: pro-
vided that the number of conditions matches the number of degrees of freedom, interpola-
tion by trigonometric polynomials is always possible. The proof, left as an exercise, follows
the same lines as the proof of Theorem 15.1.

Theorem 18.3. Fix x0 < x1 < · · · < x2n in [−π, π). For any values y0, y1, . . . , y2n, there ex-
ists a unique trigonometric polynomial of degree at most n that interpolates y0, y1, . . . , y2n

at the points x0, x1, . . . , x2n – in short,

∃ ! p ∈ Tn : p(xi) = yi, i ∈ J0, 2nK.
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In general, simple representations for the trigonometric interpolant, matching Lagrange
or Newton forms, are not available. However, if the interpolation points are assumed to be
the equidistant, e.g

τk :=
k 2π

2n+ 1
, k ∈ J−n, nK,

then the trigonometric interpolant admits a nice expression. It involves the pseudo-inner
product

〈f, g〉2n+1 :=
1

2n+ 1

n∑
k=−n

f(τk)g(τk), f, g ∈ C2π,

or more generally, with N ≥ 2n+ 1 and σk :=
k 2π
N

, k ∈ J1, NK,

〈f, g〉N :=
1
N

N∑
k=1

f(σk)g(σk), f, g ∈ C2π.

These are termed a pseudo-inner products because the positivity condition is not fulfilled.
But they would be genuine inner products if we restricted them to the space Tn [use Lemma
18.2]. As a matter of fact, it would agree with the usual inner product on this space.

Lemma 18.4. With N ≥ 2n+ 1, one has, for any p, q ∈ Tn,

〈p, q〉N = 〈p, q〉.

Proof. It is enough to verify that

1
N

N∑
k=1

P (σk) =
1
2π

∫ π

−π
P (x)dx

for any trigonometric polynomial P ∈ T2n, since pq ∈ T2n for any p, q ∈ Tn [check this]. In
fact, it is enough to verify this for P = 1,C1, S1, . . . , C2n, S2n. This is immediate for P = 1.
As for P = Ch, h ∈ J1, 2nK, one has

1
2π

∫ π

−π
cos(hx)dx = 0,

1
N

N∑
k=1

cos(hσk) =
1
N
<
( N∑

k=1

eihσk

)
=

1
N
<
( N∑

k=1

eihk2π/N
)

=
1
N
<
(
eih2π/N

N−1∑
k=0

(eih2π/N )k
)

=
1
N
<
(
eih2π/N 1− (eih2π/N )N

1− eih2π/N

)
= 0,

hence the expected result. The same holds for P = Sh, h ∈ J1, 2nK [replace < by =].
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This aside tells us that the system [1, C1, S1, . . . , Cn, Sn] is also orthogonal with respect to
〈·, ·〉N . Let us now give the expression for the trigonometric interpolant. One should note
the analogy with (18.1).

Theorem 18.5. The trigonometric polynomial p ∈ Tn that interpolates the function f ∈ C2π

at the equidistant points τ−n, . . . , τn is given by

(18.2) p =
〈f, 1〉2n+1

〈1, 1〉2n+1
1 +

n∑
k=1

( 〈f, Ck〉2n+1

〈Ck, Ck〉2n+1
Ck +

〈f, Sk〉2n+1

〈Sk, Sk〉2n+1
Sk

)
.

Proof. Let us write p in the form α0 +
∑n

k=1(αkCk + βkSk). By the 〈·, ·〉2n+1-orthogonality of
the system [1, C1, S1, . . . , Cn, Sn], we deduce e.g. that

αk〈Ch, Ch〉2n+1 = 〈p, Ch〉2n+1 =
1

2n+ 1

n∑
k=−n

p(τk)Ch(τk) =
1

2n+ 1

n∑
k=−n

f(τk)Ch(τk) = 〈f, Ch〉2n+1.

In the same flavor, a slightly more general result holds.

Proposition 18.6. Given a function f ∈ C2π and N ≥ 2n + 1, the trigonometric polyno-
mial p ∈ Pn that best approximates f in the least-squares sense on the equidistant points

σ1, . . . , σN – i.e. that minimizes
1
N

N∑
k=1

(q(σk)− f(σk))2 over all q ∈ Tn – is given by

p =
〈f, 1〉N
〈1, 1〉N

1 +
n∑

k=1

( 〈f, Ck〉N
〈Ck, Ck〉N

Ck +
〈f, Sk〉N
〈Sk, Sk〉N

Sk

)
.

Proof. Let P be a trigonometric polynomial in TbN/2c interpolating f at σ1, . . . , σN [beware
of the case N even]. Note that, for q ∈ Tn,

1
N

N∑
k=1

(q(σk)− f(σk))2 =
1
N

N∑
k=1

(q(σk)− P (σk))2 = 〈q − P, q − P 〉N ,

so we are looking for the best approximation to P from Tn ⊆ TbN/2c relatively to a genuine
inner product on TbN/2c. Thus we must have

p =
〈P, 1〉N
〈1, 1〉N

1+
n∑

k=1

( 〈P,Ck〉N
〈Ck, Ck〉N

Ck+
〈P, Sk〉N
〈Sk, Sk〉N

Sk

)
=
〈f, 1〉N
〈1, 1〉N

1+
n∑

k=1

( 〈f, Ck〉N
〈Ck, Ck〉N

Ck+
〈f, Sk〉N
〈Sk, Sk〉N

Sk

)
.
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18.3 Fast Fourier Transform

When N is taken large enough, the best least-squares approximation on σ1, . . . , σN from
Tn almost agrees with the n-th partial Fourier sum. This short section is devoted to the
computational aspects of this least-squares approximation. In particular, an algorithm for
the efficient determination of the coefficients in (18.2), called the fast Fourier transform
and shortened as FFT, is described. To make things easier, we will determine the complex
coefficients

(18.3) ch := 〈f, Ch〉N + i〈f, Sh〉N =
1
N

N∑
k=1

f(σk)eihσk =:
N∑

k=1

yke
ihσk

In a straightforward approach, each coefficient ch necessitates N + 1 multiplications [we
assume that the cos(hσk) have been computed and stored once and for all] and since there
are N of these coefficients, the number γN of multiplications required to determine the
coefficients c1, . . . , cN is at most (N + 1)N = O(N2). With the FFT algorithm, the cost is
reduced to O(N lnN). This is a significant improvement, for example, when N ≈ 3 · 104,
one has N2 ≈ 9 · 108 while N lnN ≈ 3 · 105. We will simply establish this when N = 2p, in
which case the cost of the FFT algorithm is O(p2p). Observe that, for h ∈ J1, N/2K, one has

ch + ch+N/2 =
1
N

N∑
k=1

yk(eihσk + ei(h+N/2)σk) =
1
N

N∑
k=1

yke
ihσk(1 + eikπ) =

2
N

N∑
k=1, k even

yke
ihσk

=
1

N/2

N/2∑
k=1

y2k e
ihk2π/(N/2),

ch − ch+N/2 =
1
N

N∑
k=1

yk(eihσk − ei(h+N/2)σk) =
1
N

N∑
k=1

yke
ihσk(1− eikπ) =

2
N

N∑
k=1, k odd

yke
ihσk

=
eih2π/N

N/2

N/2∑
k=0

y2k+1 e
ihk2π/(N/2).

These formulae have [almost] the same form as (18.3), N being replaced by N/2, and
they allow for the determination of all the ch, h ∈ J1, NK, via the determination of all
the ch + ch+N/2 and all the ch − ch+N/2, h ∈ J1, N/2K. For the first ones, we perform γN/2

multiplications, and we perform γN/2 +N/2 multiplications for the second ones [one extra
multiplication for each coefficient]. Thus, we have

γN = 2γN/2 +N/2, or γ2p = 2γ2p−1 + 2p−1.
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Of course, the process will now be repeated. With the assumption that γ2p−1 ≤ (p− 1)2p−1,
we get

γ2p ≤ (p− 1)2p + 2p−1 ≤ (p− 1)2p + 2p = p2p.

We would deduce, with a proper induction, that γ2p ≤ p2p for any p. This is the announced
result.

18.4 Exercises

From the textbook: 13, 14 p 532; 2 p 531; 6, 12 p 532; 1, 4, 9 p 543.

1. Prove Theorem 18.3.

2. Determine the Fourier coefficients of the function f ∈ C2π defined on [−π, π] by f(t) = t2.
Write down the Fourier expansion of f and specify it for the points 0 and π to evaluate
some infinite sums.
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Part V

Numerical differentiation and
integration
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Chapter 19

Estimating derivatives:
Richardson extrapolation

19.1 Numerical differentiation

In practical situations, a function f is rarely completely determined, but is available only
through a finite numbers of values f(x0), . . . , f(xn), say. Can this information be used to

estimate a derivative f ′(c) or an integral
∫ b

a
f(x)dx? Without further assumptions on f ,

this clearly appears impossible. It would be possible, though, if f was known to be a poly-
nomial of degree at most n [see the theory of interpolation]. But the information at hand
is not generally sufficient to fully recover f , and any numerical estimate for derivatives or
integrals should be viewed skeptically unless accompanied by some bound on the errors
involved.

To illustrate this point, consider the basic approximating formula for a derivative

f ′(x) ≈ f(x+ h)− f(x)
h

.

To assess the error, one uses Taylor expansion

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ), ξ between x and x+ h,

which one rearranges as

(19.1) f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(ξ), ξ between x and x+ h.
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This is already more useful, since an error term comes with the numerical formula. Note
the two parts in the error term: a factor involving some high-order derivative of f , forcing
the function to belong to a certain smoothness class for the estimate to be valid, and a
factor involving a power of h, indicating the speed of convergence as h approaches zero –
the higher the power, the faster the convergence. The previous formula fares poorly, since
the error behaves like O(h). One can obtain an improved formula using

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1),

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ2),

with ξ1, ξ2 between x and x + h, and between x and x − h, respectively. Subtracting and
rearranging, one obtains

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

12
[f ′′′(ξ1) + f ′′′(ξ2)].

The error term is now a better O(h2), provided that f is thrice, rather than merely twice,
differentiable. Note that, if f ∈ C3, the error term can be rewritten [check it] as

(19.2) f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f ′′′(ξ), ξ between x− h and x+ h.

It should be pointed out that in both (19.1) and (19.2), there is a pronounced deterioration
in accuracy as h approaches zero. This is due to subtractive cancellation: the values of
f(x − h), f(x), and f(x + h) are very close to each other – identical in the machine – and
the computation of the difference yields severe loss of significant digits. Besides, one also
has to be aware that numerical differentiation from empirical data is highly unstable and
should be undertaken with great caution [or avoided]. Indeed, if the sampling points x± h
are accurately determined while the ordinates f(x ± h) are inaccurate, then the errors in
the ordinates are magnified by the large factor 1/(2h).

19.2 Richardson extrapolation

The procedure known as Richardson extrapolation is used to obtain numerical formulae
whose order of accuracy can be arbitrary high. Note that, in the same way as we obtained
(19.2) but using the complete Taylor expansions of f(x− h) and f(x+ h), we would obtain

f ′(x) =
f(x+ h)− f(x− h)

2h
−
[h2

3!
f (3)(x) +

h4

5!
f (5)(x) +

h6

7!
f (7)(x) + · · ·

]
.
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This equation takes the form

(19.3) L = φ[1](h) + a
[1]
2 h

2 + a
[1]
4 h

4 + a
[1]
6 h

6 + · · · .

Here L and φ[1](h) stand for f ′(x) and [f(x+ h)− f(x− h)]/(2h), but could very well stand
for other quantities, so that the procedure is applicable to many numerical processes. As of
now, the error term a

[1]
2 h

2 + a
[1]
4 h

4 + · · · is of order O(h2). Our immediate aim is to produce
a new formula whose error term is of order O(h4). The trick is to consider (19.3) for h/2
instead of h, which yields

4L = 4φ[1](h/2) + a
[1]
2 h

2 + a
[1]
4 h

4/4 + a
[1]
6 h

6/16 + · · · .

Combining the latter with (19.3), we obtain

L =
4
3
φ[1](h/2)− 1

3
φ[1](h) − a[1]

4 h
4/4− 5a[1]

6 h
6/16− · · ·

=: φ[2](h) + a
[2]
4 h

4 + a
[2]
6 h

6 + a
[2]
8 h

8 + · · · .

The numerical formula has already been improved by two orders of accuracy. But there is
no reason to stop here: the same step can be carried out once more to get rid of the term in
h4, then once again to get rid of the term in h6, and so on. We would get

L = φ[2](h) + a
[2]
4 h

4 + a
[2]
6 h

6 + · · ·

16L = 16φ[2](h/2) + a
[2]
4 h

4 + a
[2]
6 h

6/4 + · · · ,

and consequently

L = φ[3](h) + a
[3]
6 h

6 + · · · , with φ[3](h) :=
16
15
φ[2](h/2)− 1

15
φ[2](h).

On the same model, we would get

L = φ[k](h) + a
[k]
2kh

2k + · · ·

4kL = 4kφ[k](h/2) + a
[k]
2kh

2k + · · · ,

and consequently

L = φ[k+1](h) + a
[k+1]
2k+2h

2k+2 + · · · , with φ[k+1](h) :=
4k

4k − 1
φ[k](h/2)− 1

4k − 1
φ[k](h).

Let us now give the algorithm allowing for M steps of Richardson extrapolation. Note
that we prefer to avoid the recursive computation of the functions φ[k], since we only need
φ[M+1](h) for some particular h, say h = 1. Evaluating φ[M+1](h) involves φ[M ](h/2) and
φ[M ](h), which in turn involve φ[M−1](h/4), φ[M−1](h/2), and φ[M−1](h). Hence, for any k,
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the values φ[k](h/2M+1−k), . . . , φ[k](h) are required, and the values φ[1](h/2M ), . . . , φ[1](h) are
eventually required. Thus, we start by setting

D(n, 1) := φ[1](h/2n−1), for n ∈ J1,M + 1K,

and we compute the quantities D(n, k) corresponding to φ[k](h/2n−k) by

D(n, k + 1) =
4k

4k − 1
D(n, k)− 1

4k − 1
D(n− 1, k), for k ∈ J1,MK and n ∈ Jk + 1,M + 1K.

This results in the construction of the triangular array

D(1, 1)
D(2, 1) D(2, 2)
D(3, 1) D(3, 2) D(3, 3)

...
...

... . . .
D(M + 1, 1) D(M + 1, 2) D(M + 1, 3) · · · D(M + 1,M + 1)

by way of the pseudocode

input x, h, M
for n = 1 to M + 1 do D(n, 1)← Φ(x, h/2n−1) end do end for
for k = 1 to M do

for n = k + 1 to M + 1 do
D(n, k + 1)← D(n, k) + [D(n, k)−D(n− 1, k)]/(4k − 1)
end do end for

end do end for
output D

The function Φ should have been made available separately here. Note that this algorithm
too will end up producing meaningless results due to subtractive cancellation.

19.3 Exercises

From the textbook: 5 p 184, 9 p 185.

1. Establish the second derivative formula

f ′′(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
− h2

12
f (4)(ξ), ξ between x− h and x+ h.

102



2. Derive the following two formulae, together with their error terms, for approximating
the third derivative. Which one is more accurate?

f ′′′(x) ≈ 1
h3

[
f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x)

]
,

f ′′′(x) ≈ 1
2h3

[
f(x+ 2h)− 2f(x+ h) + 2f(x− h)− f(x− 2h)

]
.

3. Program the Richardson extrapolation algorithm given in the notes to estimate f ′(x).
Test your program on

• lnx at x = 3,

• tanx at x = sin−1(0.8),

• sin(x2 + x/3) at x = 0.

Optional problems

From the textbook: 15 p 186.
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Chapter 20

Numerical integration based on
interpolation

20.1 General framework

Suppose that we want to integrate a function f over an interval [a, b]. We select points
x0, x1, . . . , xn on [a, b] and interpolate f at these points by a polynomial p ∈ Pn. The La-
grange form of p is

p(x) =
n∑

i=0

f(xi)`i(x), `i(x) :=
n∏

j=0, j 6=i

x− xj

xi − xj
.

In the hope that p provides a good approximation to f , we expect that∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =

n∑
i=0

f(xi)
∫ b

a
`i(x)dx =:

n∑
i=0

Aif(xi).

Note that the coefficients A0, . . . , An are independent of f and that the formula is exact
for all polynomials of degree at most n. If the nodes x0, . . . , xn are equidistant, the latter
formula is called Newton–Cotes formula. More generally, the approximation of the in-

tegral
∫ b

a
f(x)dx by a sum of the type

n∑
i=0

Aif(xi) is called a numerical quadrature. If

we are given such a quadrature formula which is exact on Pn, we can always retrieve the
coeffiecients A0, . . . , An, using the Lagrange cardinal polynomials, by writing∫ b

a
`j(x)dx =

n∑
i=0

Ai`j(xi) = Aj .
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We could also retrieve the coefficients by solving the linear system [check its nonsingular-
ity]

bk+1 − ak+1

k + 1
=
∫ b

a
xkdx =

k∑
i=0

Ai x
k
i , k ∈ J0, nK.

As mentioned in the previous chapter, a numerical estimate for an integral should come
with a bound on the error. For this purpose, recall that the error in polynomial interpola-
tion is

f(x)− p(x) = [x0, . . . , xn, x]f
n∏

i=0

(x− xi).

Integrating, we get∫ b

a
f(x)dx−

n∑
i=0

Aif(xi) =
∫ b

a
[x0, . . . , xn, x]f

n∏
i=0

(x− xi)dx.

Since
∣∣[x0, . . . , xn, x]f

∣∣ ≤ M

(n+ 1)!
, where M := max

ξ∈[a,b]
|f (n+1)(ξ)|, we obtain the bound

∣∣∣ ∫ b

a
f(x)dx−

n∑
i=0

Aif(xi)
∣∣∣ ≤ M

(n+ 1)!

∫ b

a

n∏
i=0

|x− xi| dx.

One could minimize the right-hand side over the nodes x0, . . . , xn. In the case [a, b] = [−1, 1],
this would lead to the zeros of Un+1 [Chebyshev polynomial of the second kind], that is to
the choice xk = cos

(
(k + 1)π/(n + 2)

)
, k ∈ J0, nK. We called upon the fact that 2−nUn

minimizes the quantity
∫ 1

−1
|p(x)|dx over all monic polynomials p ∈ Pn.

20.2 Trapezoidal rule

Take n = 1, x0 = a, and x1 = b to obtain [with the help of a picture] A0 = A1 =
b− a

2
.

Hence the corresponding quadrature formula, exact for p ∈ P1, reads∫ b

a
f(x)dx =

b− a
2

[f(a) + f(b)].

The error term of this trapezoidal rule takes the form [check it]∫ b

a
f(x)dx− b− a

2
[f(a) + f(b)] = − 1

12
(b− a)3f ′′(ξ), ξ ∈ [a, b].

Let us now partition the interval [a, b] into n subintervals whose endpoints are located at
a = x0 < x1 < · · · < xn = b. A composite rule is produced by applying an approximating
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formula for the integration over each subinterval. In this case, we obtain the composite
trapezoidal rule∫ b

a
f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx ≈
n∑

i=1

xi − xi−1

2
[f(xi−1) + f(xi)].

In other words, the integral of f is replaced by the integral of the broken line that inter-
polates f at x0, x1, . . . , xn. In particular, if [a, b] is partitioned into n equal subintervals, i.e.

if xi = a+ ih, where h :=
b− a
n

is the length of each subinterval, we have

∫ b

a
f(x)dx ≈ h

2

n∑
i=1

[f(a+ (i− 1)h) + f(a+ ih)] =
h

2

[
f(a) + 2

n−1∑
i=1

f(a+ ih) + f(b)
]
.

The latter expression is preferred for computations, since it avoids the unnecessary repe-

tition of function evaluations. The error term takes the form − 1
12

(b − a)h2f ′′(ξ) for some
ξ ∈ [a, b], and the verification of this statement is left as an exercise.

20.3 Simpson’s rule

We now take n = 2, x0 = a, x1 =
a+ b

2
, and x2 = b. This leads to the formula

(20.1)
∫ b

a
f(x)dx ≈ b− a

6
[f(a) + 4f((a+ b)/2) + f(b)],

which is known as Simpson’s rule. To determine the coefficients A0, A1, A2, we can use
e.g. the conditions A0 = A2 [symmetry], A0 + A1 + A2 = b − a [corresponding to f(x) = 1],
and the condition corresponding to f(x) = (x − a)2. Somehow surprisingly, Simpson’s rule
is not only exact on P2, but also on P3. Indeed, its error term can be written as

− 1
90

(
b− a

2

)5

f (4)(ξ), ξ ∈ [a, b].

To derive it, we denote by 2h and c the length and the midpoint of [a, b]. Thus, the left-hand
side of (20.1) becomes∫ c+h

c−h
f(x)dx =

∫ h

−h
f(c+ u) =

∫ h

−h

(
f(c) + f ′(c)u+

f ′′(c)
2

u2 +
f ′′′(c)

6
u3 +

f (4)(c)
24

u4 + · · ·
)

= 2h f(c) +
h3

3
f ′′(c) +

h5

60
f (4)(c) + · · · ,
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while the right-hand side becomes

h

3
[f(c− h) + 4f(c) + f(c+ h)] =

h

3
[
6f(c) + h2f ′′(c) +

h4

12
f (4)(c) + · · ·

]
= 2h f(c) +

h3

3
f ′′(c) +

h5

36
f (4)(c) + · · · .

The difference reduces to

h5

60
f (4)(c)− h5

36
f (4)(c) + · · · = −h

5

90
f (4)(c) + · · · .

The announced error formula would be obtained by expressing the Taylor remainders in a
more careful way.

A composite Simpson’s rule based on an even number n of subintervals is often used.

With xi := a+ ih and h :=
b− a
n

, it reads

∫ b

a
f(x)dx =

n/2∑
i=1

∫ x2i

x2i−2

f(x)dx ≈ h

3

n/2∑
i=1

[f(x2i−2) + 4f(x2i−1) + f(x2i)]

=
h

3

[
f(x0) + 2

n/2−1∑
i=1

f(x2i) + f(x2n) + 4
n/2∑
i=1

f(x2i−1)
]
.

It can be established that the error term is of the form

− 1
180

(b− a)h4f (4)(ξ), ξ ∈ [a, b].

20.4 Exercises

From the textbook: 3.c.d.f., 5.c.d.f., 13, 15 p195.

1. Establish the form given in the notes for the error in the composite trapezoidal rule .

2. Prove that Simpson’s rule is exact on P3, without using the error formula.

3. Is there a formula of the form
∫ 1

0
f(x)dx ≈ α[f(x0) + f(x1)] that correctly integrates all

quadratic polynomials?

4. For n even, prove that if the formula∫ 1

−1
f(x)dx ≈

n∑
i=0

Aif(xi)
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is exact for all polynomials in Pn, and if the nodes are symmetrically placed about the
origin, then the formula is exact for all polynomials in Pn+1.

5. Write a function SimpsonUniform[f,a,b,n] to calculate
∫ b

a
f(x)dx using the composite

Simpson’s rule with 2n equal subintervals. Use it to approximate π from an integral of

the type
∫ b

a

c

1 + x2
dx.

Optional problems

1. Prove that 2−nUn is the minimizer of
∫ 1

−1
|p(x)|dx over all monic polynimials p ∈ Pn

[Hint: prove first the orthogonality relations
∫ 1

−1
Um(x) sgn[Un(x)]dx = 0, m ∈ J0, n − 1K,

next integrate p sgn[Un] for all monic polynomials p = 2−nUn + an−1Un−1 + · · ·+ a0U0].
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Chapter 21

Romberg integration

The Romberg algorithm combines the composite trapezoidal rule and the Richardson

extrapolation process in order to approximate the integral I :=
∫ b

a
f(x)dx.

21.1 Recursive trapezoidal rule

Recall that the composite trapezoidal rule on [a, b], using n subintervals of length h =
b− a
n

,
provides an approximate value for I given by

I(n) = h
n∑

i=0

′f(a+ ih),

where the prime on the summation symbol means that the first and last terms are to be

halved. Note that, when computing I(2n), we will need values of the form f
(
a+2i

b− a
2n

)
=

f
(
a + i

b− a
n

)
. Since these are precisely the summands of I(n), we should use the work

done in the computation of I(n) to compute I(2n). Precisely, remark that

I(2n) =
I(n)

2
+
b− a
2n

n∑
i=1

f
(
a+ (2i− 1)

b− a
2n

)
.

This allows to compute the sequence I(1), I(2), . . . , I(2k), . . . in a recursive way, without
duplicate function evaluations. Let us now accept the validity of an error formula of the
type

I = I(2n) + c2h
2 + c4h

4 + · · · , where h =
b− a
2n

.
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21.2 Romberg algorithm

Since the previous formula remains valid when h is halved, we may apply Richardson
extrapolation to obtain more and more accurate error formulae [to use exactly the same
formalism as in Chapter 19, we could express everything only in terms of h]. This would
lead us to define, for n ∈ J1,M + 1K,

R(n, 1) = I(2n−1),

and then, for k ∈ J1,MK and n ∈ Jk + 1,M + 1K,

R(n, k + 1) = R(n, k) +
1

4k − 1
[R(n, k)−R(n− 1, k)].

The calculation provides an array of the form

R(1, 1)
R(2, 1) R(2, 2)
R(3, 1) R(3, 2) R(3, 3)

...
...

... . . .
R(M + 1, 1) R(M + 1, 2) R(M + 1, 3) · · · R(M + 1,M + 1)

Note that the first column is computed according to the recursive process presented earlier.
Usually, we only need a moderate value of M , since 2M + 1 function evaluations will be
performed. The pseudocode is only marginally different from the one in Chapter 19, the
difference being that the triangular array is computed row by row, instead of column by
column.

input a, b, f , M

h← b− a, R(1, 1)← b− a
2

[f(a) + f(b)]
for n = 1 to M do

h← h/2, R(n+ 1, 1) = R(n, 1)/2 + h
∑2n−1

i=1 f
(
a+ (2i− 1)h

)
for k = 1 to n do

R(n+ 1, k + 1) = R(n+ 1, k) + [R(n+ 1, k)−R(n, k)]/(4k − 1)
end do end for

end do end for
output R
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21.3 Exercises

From the textbook: 9 p 211, 13 p 212, 2 p 211 [after having written a program to carry out
the Romberg algorithm].

1. Calculate
∫ 1

0

sinx√
x
dx by the Romberg algorithm [Hint: change of variable].

2. Assume that the first column of the Romberg array converges to I :=
∫ b

a
f(x)dx – i.e.

that lim
n→∞

R(n, 1) = I. Show that the second column also converges to I. Can one infer
that lim

n→∞
R(n, n) = I?
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Chapter 22

Adaptive quadrature

22.1 Description of the method

Adaptive quadrature methods are designed to take into account the behavior of the
function f to be integrated on an interval [a, b]. To do so, sample points will be clustered
in the regions of large variations of f . We present here a typical adaptive method based
on Simpson’s rule, where the user only supplies the function f , the interval [a, b], and a
desired accuracy ε.

We start by using Simpson’s rule on the interval [a, b]. If the approximation is not accurate
enough, then the interval [a, b] is divided into two equal subintervals, on each of which
Simpson’s rule is used again. If one [or both] of the resulting approximations is not accurate
enough, then a subdivision is applied once more. The repetition of this process constitutes
the main idea behind the adaptive Simpson’s method. Note that, at the end of the
process, we will have obtained approximations S1, . . . , Sn to the integrals of f on some
intervals [x0, x1], . . . , [xn−1, xn]. Denoting e1, . . . , en the associated local errors, we get∫ b

a
f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx =
n∑

i=1

Si +
n∑

i=1

ei.

Thus, to ensure that the total error is bounded by ε, we can impose

|ei| ≤ ε
xi − xi−1

b− a
,

for in this case ∣∣∣ n∑
i=1

ei

∣∣∣ ≤ n∑
i=1

|ei| ≤
ε

b− a

n∑
i=1

(xi − xi−1) =
ε

b− a
(b− a) = ε.
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On each interval [u,w] that will be considered, we write the basic Simpson’s rule as∫ w

u
f(x)dx =

w − u
6

[f(u) + 4f
(
(u+ w)/2

)
+ f(w)] − 1

90

(
w − u

2

)5

f (4)(ζ),

=: S(u,w) − 1
90

(
w − u

2

)5

f (4)(ζ), ζ ∈ [u,w].

Then, if [u,w] is to be divided into two equal subintervals [u, v] and [v, w], a more accurate
value of the integral can be computed according to∫ w

u
f(x)dx =

∫ v

u
f(x)dx+

∫ w

v
f(x)dx

= S(u, v)− 1
90

(
v − u

2

)5

f (4)(ξ′) + S(v, w)− 1
90

(
w − v

2

)5

f (4)(ξ′′)

= S(u, v) + S(v, w)− 1
90

(
w − u

2

)5 1
25

[f (4)(ξ′) + f (4)(ξ′′)]

= S(u, v) + S(v, w)− 1
24

1
90

(
w − u

2

)5

f (4)(ξ),

where ξ′, ξ′′, and ξ belong to [u, v], [v, w], and [u,w], respectively. This is justified only if
f (4) is continuous. As usual, the error term in such a formula cannot be bounded without
some knowledge of f (4). For automatic computation, however, it is imperative to be able to
estimate the magnitude of f (4)(ξ). So we have to come up with an additional assumption.
Over small intervals, the function f (4) will be considered almost constant – in particular,
we suppose that f (4)(ζ) = f (4)(ξ). This term can then be eliminated to obtain

15
∫ w

u
f(x)dx = 16[S(u, v) + S(v, w)]− S(u,w),∫ w

u
f(x)dx = [S(u, v) + S(v, w)] +

1
15

[S(u, v) + S(v, w)− S(u,w)].

Observe that the error term has now been replaced by a quantity we are able to compute,
hence an error tolerance condition can be tested.

22.2 The pseudocode

Let us complete the groundwork before writing down the final version of the algorithm. We
start with u = a and w = b. Throughout the algorithm, the data are stored in a vector

[u, h, f(u), f(u+ h), f(u+ 2h), S],

where 2h = w − u is the length of [u,w] and S is the Simpson’s estimate on [u,w], that is

S = S(u,w) =
h

3
[f(u) + 4f(u+ h) + f(u+ 2h)].
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Then one computes the midpoint v = u+h and the estimates S1 := S(u, v) and S2 = S(v, w).
To see whether S1 + S2 is a good enough approximation, we test the inequality

|S1 + S2 − S| ≤ ε
30h
b− a

.

If the inequality holds, then the refined value S1 +S2 +[S1 +S2−S]/15 is the accepted value
of the integral of f on [u,w]. In this case, it is added to a variable Σ which should eventually
receive the approximate value of the integral on [a, b]. If the inequality does not hold, then
the interval [u,w] is divided in two. The previous vector is discarded and replaced by the
two vectors

[u, h/2, f(u), f(y), f(v), S1], y := u+ h/2,

[v, h/2, f(v), f(z), f(w), S2], z := v + h/2.

The latter are added to an existing stack of such vectors. Note that only two new function
evaluations have been required to compute S1 and S2. Note also that the user should
prevent the size of the stack from exceeding a prescribed value n, in order to avoid an
infinite algorithm. In view of the description we have made, we may now suggest the
following version of the pseudocode. A recursive version would also be conceivable.

input f , a, b, ε, n
∆← b− a, Σ← 0, h← ∆/2, c← (a+ b)/2, k ← 1,
fa← f(a), fb← f(b), fc← f(c), S ← [fa+ 4fc+ fb]h/3,
v[1] ← [a, h, fa, fc, fb, S]
while 1 ≤ k ≤ n do

h← v
[k]
2 /2,

fy = f(v[k]
1 + h) , S1 ← [v[k]

3 + 4fy + v
[k]
4 ]h/3,

fz = f(v[k]
1 + 3h), S2 ← [v[k]

4 + 4fz + v
[k]
5 ]h/3

if |S1 + S2 − v[k]
6 | < 30εh/∆

then Σ← Σ + S1 + S2 + [S1 + S2 − v[k]
6 ]/15, k ← k − 1,

if k = 0 then output Σ, stop
else if k = n then output failure, stop

fw ← v
[k]
5 ,

v[k] ← [v[k]
1 , h, v

[k]
3 , fy, v

[k]
4 , S1],

k ← k + 1,
v[k] ← [v[k−1]

1 + 2h, h, v[k−1]
5 , fz, fw, S2]

end if
end do end while
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22.3 Exercises

From the textbook: 1.b.d, 2.b.d. p 218; 5, 9 p 219.

1. Program the adaptive algorithm and test it on the integrals

•
∫ 1

0
x1/2dx,

•
∫ 1

0
(1− x)1/2dx,

•
∫ 1

0
(1− x)1/4dx.
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Chapter 23

Gaussian quadrature

23.1 The main result

Consider the quadrature formula∫ 1

−1
f(x)dx ≈

n∑
i=0

Aif(xi).

If based on interpolation, we know that the formula is exact on Pn. We also have seen
that the degree of accuracy might be larger than n for some choices of nodes x0, . . . , xn. We
may ask what is the largest degree of accuracy possible. Observe that the latter cannot
exceed 2n + 1, for if the formula was exact on P2n+2, we would obtain a contradiction by
considering f(x) = (x− x1)2 · · · (x− xn)2. In fact, the maximal degree of accuracy is exactly
2n + 1. Indeed, a judicious choice of nodes leads to the following Gaussian quadrature,
which is exact on P2n+1 [the dimension of the space where exactness occurs has doubled
from a priori n+ 1 to 2n+ 2].

Theorem 23.1. Let x0, . . . , xn be the zeros of the Legendre polynomial of degree n+1. Then
the quadrature formula∫ 1

−1
f(x)dx ≈

n∑
i=0

Aif(xi), Ai =
∫ 1

−1

n∏
j=0, j 6=i

x− xj

xi − xj
dx,

is exact on P2n+1.

Remark that the formula makes sense as long as x0, . . . , xn are distinct points in (−1, 1).
This property is not specific to the zeros of the Legendre polynomial of degree n + 1, but
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is shared by the (n+ 1)-st orthogonal polynomials relative to all possible weight functions
– see Theorem 17.2. As a matter of fact, the quadrature rule also remains valid in this
context. We only need to establish this general result.

Theorem 23.2. Let x0, . . . , xn be the zeros of the (n+ 1)-st orthogonal polynomial relative
to the weight function w. Then the quadrature formula∫ 1

−1
f(x)w(x)dx ≈

n∑
i=0

Aif(xi), Ai =
∫ 1

−1

n∏
j=0, j 6=i

x− xj

xi − xj
w(x) dx,

is exact on P2n+1.

Proof. Let f be a polynomial of degree at most 2n + 1. Consider the division of f by p, the
(n+ 1)-st orthogonal polynomial reative to w. We have

f = q p+ r, with deg r ≤ n.

Note that we must have deg q ≤ n to ensure that deg f ≤ 2n+ 1. Then observe that∫ 1

−1
f(x)w(x)dx =

∫ 1

−1
q(x)p(x)w(x)dx+

∫ 1

−1
r(x)w(x)dx =

∫ 1

−1
r(x)w(x)dx,

n∑
i=0

Aif(xi) =
n∑

i=0

Ai[q(xi)p(xi) + r(xi)] =
n∑

i=0

Air(xi).

The equality of these two quantities for all r ∈ Pn is derived from the expansion of r on the
Lagrange cardinal polynomials `0, . . . , `n associated to x0, . . . , xn, just as in Chapter 20.

It is important to notice that the weights A0, . . . , An in the previous formula are always

positive. To realize this, observe that, besides the expression Ai =
∫ 1

−1
`i(x)w(x)dx, there

also holds Ai =
∫ 1

−1
`2i (x)w(x)dx [simply take f = `2i ].

23.2 Examples

In theory, for any weight function w, we could devise the corresponding quadrature formula
numerically: construct the (n+ 1)-st orthogonal polynomial numerically, find its zeros e.g.
by using NSolve in Mathematica, and find the weights e.g. by solving a linear system.
Fortunately, this work can be avoided for usual choices of w, since the nodes xi and the
weights Ai can be found in appropriate handbooks.
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Let us consider the simple case w = 1 and n = 1. The zeros of the second orthogonal
polynomial, i.e. of the Legendre polynomial P2(x) = 3x2/2 − 1/2 are x0 = −1/

√
3 and

x1 = 1/
√

3. The weights A0 and A1 must be identical, by symmetry, and must sum to∫ 1

−1
dx = 2. Hence the Gaussian quadrature, which is exact on P3, takes the form

∫ 1

−1
f(x)dx ≈ f

(
− 1/
√

3
)

+ f
(
1/
√

3
)
.

With w = 1 and n = 2, the Gaussian quadrature would be∫ 1

−1
f(x)dx ≈ 5

9
f
(
−
√

3/5
)

+
8
9
f
(
0
)

+
5
9
f
(√

3/5
)
.

If we now consider the weight function w(x) =
1√

1− x2
, the (n+1)-st orthogonal polynomial

reduces to the Chebyshev polynomial Tn+1, whose zeros are cos
(
(2i+1)π/(2n+2)

)
, i ∈ J0, nK.

It turns out that the weights Ai are independent of i, their common value being π/(n+ 1).
Hence, with F (x) :=

√
1− x2f(x), we may write∫ 1

−1
f(x)dx =

∫ 1

−1
F (x)

dx√
1− x2

≈ π

n+ 1

n∑
i=0

F
(
cos
(
(2i+ 1)π/(2n+ 2)

))
=

π

n+ 1

n∑
i=0

sin
(
(2i+ 1)π/(2n+ 2)

)
· f
(
cos
(
(2i+ 1)π/(2n+ 2)

))
.

This is known as Hermite’s quadrature formula. Note that it is not exact on P2n+1, but
rather on wP2n+1 :=

{
w p, p ∈ P2n+1

}
.

23.3 Error analysis

For completeness, we state without proof the following error estimate.

Theorem 23.3. Let p be the (n+ 1)-st monic orthogonal polynomial relative to the weight
function w, and let x0, . . . , xn be its zeros. Then, for any f ∈ C2n+2[−1, 1], the error term in
the Gaussian quadrature formula takes the form, for some ξ ∈ (−1, 1),∫ 1

−1
f(x)w(x)dx−

n∑
i=0

Aif(xi) =
f (2n+2)(ξ)
(2n+ 2)!

∫ 1

−1
p2(x)w(x)dx.

As expected, if f belongs to P2n+1, the error term vanishes.
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23.4 Exercises

From the textbook: 1.a.c.d.h, 2.a.c.d.h, 4.a.c.d.h, 7 p 226.

1. Is is true that if ∫ b

a
f(x)w(x) dx ≈

n∑
i=0

Aif(xi)

is exact on P2n+1, then the polynomial (x− x0) · · · (x− xn) is orthogonal to the space Pn

on [a, b] with respect to the weight function w?

2. Find a formula of the form ∫ 1

0
x f(x) dx ≈

n∑
i=0

Aif(xi)

with n = 1 that is exact for all polynomials of degree at most 3. Repeat with n = 2,
making the formula exact on P5.
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Part VI

Solving ordinary differential
equations
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Chapter 24

Difference equations

Many numerical algorithms, in particular those derived from the discretization of differ-
ential equations, are designed to produce a sequence x = (xn) of numbers. Often, the
sequence x obeys an (m+ 1)-term recurrence relation of the type

(24.1) xn+m = an,m−1 xn+m−1 + · · ·+ an,0 xn, all n ∈ N.

We will establish that the solutions of the difference equation (24.1) can be given in
explicit form when the coefficients an,m−1, . . . , an,0 are constant, i.e. independent of n. But
observe first that the set S of all real sequences satisfying (24.1) is a linear subspace of the
space RN of all real sequences. In fact, this linear subspace has dimension m, since the
linear map

x ∈ S 7→ [x1, x2, . . . , xm]> ∈ Rm

is a bijection [check this fact]. The latter simply says that a solution of (24.1) is uniquely
determined by its first m terms.

If the coefficients of the recurrence relation are constant, we may rewrite (24.1) as

(24.2) xn+m + cm−1 xn+m−1 + . . .+ c1 xn+1 + c0 xn = 0, all n ∈ N.

To this equation, we associate the characteristic polynomial

p(λ) := λm + cm−1λ
m−1 + · · ·+ c1λ+ c0.
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Theorem 24.1. Suppose that the characteristic polynomial p hasm simple zeros λ1, . . . , λm.
Then the sequences

x[1] = (1, λ1 , λ
2
1 , . . . , λ

n
1 , . . .),

...

x[m] = (1, λm, λ
2
m, . . . , λ

n
m, . . .),

form a basis for the vector space S of solutions of (24.2).

Proof. First of all, we need to check that each sequence xi, i ∈ J1, nK, is a solution of (24.2).
To see this, we simply write

x
[i]
n+m + cm−1x

[i]
n+m−1 + · · ·+ c0x

[i]
n = λn+m−1

i + cm−1λ
n+m−2
i + · · ·+ c0λ

n−1
i = λn−1

i · p(λi) = 0.

Now, since the system (x[1], . . . , x[m]) has cardinality equal to the dimension of S, we only
need to verify that it is linearly independent. If it was not, then the system composed of
[1, λ1, . . . , λ

m−1
1 ]>, . . . , [1, λm, . . . , λ

m−1
m ]> would be linearly dependent, which is impossible

[remember Vandermonde matrices]. This completes the proof.

Let us illustrate how this result is used in practice. Consider the Fibonacci sequence F

defined by
F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

The first ten terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. We now emphasize a closed-form
expression for the Fibonacci number Fn. According to Theorem 24.1, the two sequences
x[1] = (µn−1) and x[2] = (νn−1) form a basis of the space

{
x ∈ RN : xn = xn−1 +xn−2

}
, where

µ and ν are the roots of the quadratic polynomial λ2 − λ− 1, that is

µ =
1−
√

5
2

and ν =
1 +
√

5
2

[golden ratio].

It follows that F = α · x[1] + β · x[2] for some constants α and β. These are determined by{
F1 = α · x[1]

1 + β · x[2]
1 ,

F2 = α · x[1]
2 + β · x[2]

2 ,
i.e.

{
1 = α · 1 + β · 1,
1 = α · µ+ β · ν.

We obtain α = − µ√
5

and β =
ν√
5

. Finally, we conclude

Fn =
1√
5
[νn − µn] =

1√
5
[νn − (1− ν)n].

For completeness, we now formulate a slight generalization of Theorem 24.1. Its proof is
based on the one of Theorem 24.1, and is therefore omitted.
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Theorem 24.2. Suppose that the polynomial p has k zeros of respective multiplicities
m1, . . . ,mk, with m1 + · · ·+mk = k. Then the sequences

(1, λ, . . . , λn, . . .)|λ=λi
,

d

dλ
(1, λ, . . . , λn, . . .)|λ=λi

, . . . ,
dmi−1

dλmi−1
(1, λ, . . . , λn, . . .)|λ=λi

,

where i runs through J1, kK, form a basis for the vector space S of solutions of (24.2).

24.1 Exercises

1. Give bases consisting of real sequences for the solution spaces of xn+2 = 2xn+1−3xn and
xn+3 = 3xn+2 − 4xn.

2. Consider the difference equation xn+2 − 2xn+1 − 2xn = 0. One of its solutions is xn =
(1−
√

3)n−1. This solution oscillates in sign and converges to zero. Compute and print out
the first 100 terms of this sequence by use of the equation xn+2 = 2(xn+1 + xn) starting
with x1 = 1 and x2 = 1−

√
3. Explain the curious phenomenon that occurs.

3. Setting x(λ) := (1, λ, . . . , λn, . . .), explain in details why the system
(
x(λ1), . . . , x(λm)

)
is

linearly independent whenever the numbers λ1, . . . , λm are distinct.

4. Consider the difference equation 4xn+2− 8xn+1 +3xn = 0. Find the general solution and
determine whether the difference equation is stable – meaning that every solution x is
bounded, that is to say supn |xn| < ∞. Assuming that x1 = 0 and x2 = −2, compute x101

using the most efficient method.
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Chapter 25

Euler’s method for initial-value
problems

An ordinary differential equation – in short, an ODE – is an equation that involves
one or more derivatives of an unknown univariate function. For example, y is understood
to be a function of t in the ordinary differential equation y′ − y = exp(t), which admits
y(t) = (t+C) exp(t) as a solution, C being an arbitrary constant. This indicates that, with-
out any further conditions, the solution of a differential equation is not unique. Hence we
often impose some initial conditions, i.e. we specify the values of [the derivatives of]
the unknown function at a given point, to make the solution unique – see next section. In
dynamics, for instance, the motion of a particle, which is governed by a second order dif-
ferential equation, is completely determined by its initial position and velocity. To describe
such initial-value problems, we often adopt the formalism

dy

dt
= f(t, y), t ∈ [a, b], y(a) = y0.

Note that we are abusing the notations by writing f(t, y) instead of f
(
t, y(t)

)
. In many

situations, we lack tools to express the solution of this equation analytically, so we settle for
a numerical solution. In any case, this is preferable to certain types of ‘explicit’ formulae.
For example, even though a solution of the equation

dy

dt
= g(t) · y(t)

could be written as

y(t) = C exp
(∫ t

a
g(u)du

)
,

this is of no practical use if the integration cannot be carried out for the specific function g.
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25.1 Existence and uniqueness of solutions

Before attempting to find approximations to the solution of a differential equation, it would
be wise to ask oneself if a solution exists and is unique. Although the answer might be
negative, existence and uniqueness are usually ensured under rather mild assumptions.

Theorem 25.1. If the function f = f(t, y) is continuous on the strip [a, b] × (−∞,∞) and
satisfies a Lipschitz condition in its second variable, that is

|f(t, y1)− f(t, y2)| ≤ L |y1 − y2| for some constant L and all t ∈ [a, b], y1, y2 ∈ (−∞,∞),

then the initial-value problem

dy

dt
= f(t, y), t ∈ [a, b], y(a) = y0.

has a unique solution in the interval [a, b].

Let us mention that, in order to check that a Lipschitz condition is satisfied, we may verify

that sup
t,y

∣∣∣∣∂f∂y (t, y)
∣∣∣∣ <∞ and use the mean value theorem. Note also that, under the same

assumptions as in Theorem 25.1, we can even conclude that the initial-value problem is
well-posed, in the sense that it has a unique solution y and that there exist constants
ε0 > 0 and K > 0 such that for any ε ∈ (0, ε0), any number γ with |γ| < ε, and any
continuous function δ with sup

t∈[a,b]
|δ(t)| < ε, the initial-value problem

dz

dt
= f(t, z) + δ(t), t ∈ [a, b], z(a) = y0 + γ,

has a unique solution z, which further satisfies sup
t∈[a,b]

|z(t)− y(t)| ≤ K ε. In other words, a

small perturbation in the problem, e.g. due to roundoff errors in the representations of f
and y0, does not significantly perturb the solution.

25.2 Euler’s method

Many numerical methods to solve the initial-value problem

y′ = f(t, y), t ∈ [a, b], y(a) = y(0),

are more efficient than Euler’s method, so that one rarely uses it for practical purposes.
For theoretical purposes, however, it has the advantage of its simplicity. The output of
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the method does not consist of an approximation of the solution function y, but rather of
approximations yi of the values y(ti) at some mesh points a = t0 < t1 < · · · < tn−1 < tn = b.

These points are often taken to be equidistant, i.e. ti = a+ i h, where h =
b− a
n

is the step
size. The approximations yi are constructed one-by-one via the difference equation

yi+1 = yi + h f(ti, yi).

The simple approximation

f(ti, y(ti)) = y′(ti) ≈
y(ti+1)− y(ti)

h

was used here to get rid of the derivative. The associated pseudocode is trivial to write,
therefore omitted. We concentrate instead on a convergence analysis of the method.

Theorem 25.2. Let us assume that the function f = f(t, y) is continuous on the strip
[a, b] × (−∞,∞) and satisfies a Lipschitz condition with constant L in its second variable.
Let y be the unique solution of the initial-value problem

dy

dt
= f(t, y), t ∈ [a, b], y(a) = y0.

If y is twice differentiable and sup
t∈[a,b]

|y′′(t)| =: M <∞, then, for each i ∈ J0, nK, one has

|y(ti)− yi| ≤
hM

2L
[exp

(
L(ti − a)

)
− 1],

where y0, . . . , yn are the approximations generated by Euler’s method on the uniform mesh

t0, . . . , tn with step size h =
b− a
n

.

Proof. Given i ∈ J0, n− 1K, we can write, for some ξi ∈ (ti, ti+1),

|y(ti+1)− yi+1| = |
(
y(ti) + h y′(ti) +

h2

2
y′′(ξi)

)
−
(
yi + h f(ti, yi)

)
|

= |y(ti)− yi + h (y′(ti)− f(ti, yi)) +
h2

2
y′′(ξi)|

= |y(ti)− yi + h (f(ti, y(ti))− f(ti, yi)) +
h2

2
y′′(ξi)|

≤ |y(ti)− yi|+ h |f(ti, y(ti))− f(ti, yi)|+
h2

2
|y′′(ξi)|

≤ |y(ti)− yi|+ hL |y(ti)− yi|+
h2

2
M.

To simplify the notations, set ui := |y(ti)− yi|, a := hL, and b := h2M/2. Then the previous
inequality takes the form ui+1 ≤ (1 + a)ui + b, which is equivalent [add a constant c to be
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chosen smartly] to the inequality ui+1 + b/a ≤ (1 + a)
(
ui + b/a

)
. It follows by immediate

induction that

ui +
b

a
≤ (1 + a)i

(
u0 +

b

a

)
, i.e. ui +

hM

2L
≤ (1 + hL)i hM

2L
.

To obtain the announced result, remark that (1 + hL)i ≤ exp(ihL) = exp
(
L(ti − a)

)
.

Note that, y′′ being a priori unknown, we cannot give a precise evaluation for M . If f is
‘well-behaved’, however, we can differentiate the relation y′(t) = f(t, y(t)) and estimate M
from there. It should also be noted that, because of roundoff errors, decreasing the step
size h beyond a certain critical value will not improve the accuracy of the approximations.

25.3 Exercises

From the textbook: 1.a.c., 2.a.c. p 255; 8.a.c. p 256; 1.b.c. p 263; 9 p 264; 12 p 265.

Optional problems

From the textbook: 9 p 256; 16 p 265.

25.4 Taylor series methods

To be completed.

127



Chapter 26

Runge–Kutta methods

The methods named after Carl Runge and Wilhelm Kutta are designed to imitate the Tay-
lor series methods without requiring analytic differentiation of the original differential
equation. Performing preliminary work before writing the computer program can indeed
be a serious obstacle. An ideal method should involve nothing more that writing a code
to evaluate f , and the Runge–Kutta methods accomplish just that. We will present the
Runge–Kutta method of order two, even though its low precision usually precludes its use
in actual scientific computations – it does find application in real-time calculations on small
computers, however. Then the Runge–Kutta method of order four will be given, without
any form of proof.

26.1 Taylor series for f(x, y)

The bivariate Taylor series, analogous to the usual univariate one, takes the form

f(x+ h, y + k) =
∞∑
i=0

1
i!

([
h
∂

∂x
+ k

∂

∂y

]i

f

)
(x, y),
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where the operators appearing in this equation are[
h
∂

∂x
+ k

∂

∂y

]0

f = f[
h
∂

∂x
+ k

∂

∂y

]1

f = h
∂f

∂x
+ k

∂f

∂y[
h
∂

∂x
+ k

∂

∂y

]2

f = h2∂
2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2∂

2f

∂x2

...

If the series is truncated, an error term is needed to restore equality. We would have

f(x+ h, y + k) =
n−1∑
i=0

1
i!

([
h
∂

∂x
+ k

∂

∂y

]i

f

)
(x, y) +

1
n!

([
h
∂

∂x
+ k

∂

∂y

]n

f

)
(x, y),

where the point (x, y) lies in the line segment joining (x, y) and (x+h, y+k). It is customary
to use subscripts to denote partial derivatives, for instance

fx :=
∂f

∂x
, fy :=

∂f

∂y
, fxy =

∂2f

∂x∂y

(
=

∂2f

∂y∂x

)
.

Hence we may write the Taylor expansion of f [check it on f(x, y) = (x+ y)2] as

f(x+h, y+k) = f(x, y) + hfx(x, y)+kfy(x, y) +
1
2

(
h2fxx(x, y)+2hkfxy(x, y)+k2fyy(x, y)

)
+ · · ·

26.2 Runge–Kutta method of order two

In order to solve the initial-value problem

y′ = f(t, y), t ∈ [a, b], y(a) = y0,

we need a procedure for advancing the solution function one step at a time. For the Runge–
Kutta method of order two, the formula for y(t+ h) in terms of known quantities is

(26.1) y(t+ h) = y(t) + w1K1 + w2K2, with

{
K1 := hf(t, y),
K2 := hf(t+ αh, y + βK1).

The objective is to determine the constants w1, w2, α, and β so that (26.1) is as accurate as
possible, i.e. reproduces as many terms as possible in the Taylor expansion

(26.2) y(t+ h) = y(t) + y′(t)h+
y′′(t)

2
h2 +

y′′′(t)
6

h3 + · · · .
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One obvious way to force (26.1) and (26.2) to agree up through the term in h is by taking
w1 = 1 and w2 = 0. This is Euler’s method. One can improve this to obtain agreement up
through the term in h2. Let us apply the bivariate Taylor theorem in (26.1) to get

y(t+ h) = y(t) + w1hf(t, y) + w2h
(
f(t, y) + αhft(t, y) + βhf(t, y)fy(t, y) +O(h2)

)
= y(t) + (w1 + w2)f(t, y)h+

(
αw2ft(t, y) + βw2f(t, y)fy(t, y)

)
h2 +O(h3).

Making use of y′′(t) = ft(t, y) + f(t, y)fy(t, y), Equation (26.2) can also be written as

y(t+ h) = y(t) + f(t, y)h+
(1

2
ft(t, y) +

1
2
f(t, y)fy(t, y)

)
h2 +O(h3).

Thus, we shall require

w1 + w2 = 1, αw2 =
1
2
, βw2 =

1
2
.

Among the convenient solutions, there are the choice α = 1, β = 1, w1 = 1/2, w2 = 1/2,
resulting in the second-order Runge–Kutta method [also known as Heun’s method]

y(t+ h) = y(t) +
h

2
f(t, y) +

h

2
f
(
t+ h, y + hf(t, y)

)
,

and the choice α = 1/2, β = 1/2, w1 = 0, w2 = 1, resulting in the modified Euler’s method

y(t+ h) = y(t) + hf
(
t+ h/2, y + h/2 f(t, y)

)
.

26.3 Runge–Kutta method of order four

The classical fourth-order Runge–Kutta method is of common use when solving an
initial-value problem. It is based on the approximation formula

y(t+ h) = y(t) +
1
6
(K1 + 2K2 + 2K3 +K4), with


K1 := hf(t, y),
K2 := hf(t+ h/2, y +K1/2),
K3 := hf(t+ h/2, y +K2/2),
K4 := hf(t+ h, y +K3).

Despite its elegance, this formula is tedious to derive, and we shall not do so. The method
is termed fourth-order because it reproduces the terms in the Taylor series up to and in-
cluding the one involving h4, so that the [local truncation] error is in h5. Note that the
solution at y(t+ h) is obtained at the expense of four function evaluations. Here is a possi-
ble pseudocode to be implemented.
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input f , t, y, h, n
t0 ← t, output 0, t, y
for i = 1 to n do

K1 ← hf(t, y)
K2 ← hf(t+ h/2, y +K1/2)
K3 ← hf(t+ h/2, y +K2/2)
K4 ← hf(t+ h, y +K3)
y ← y + (K1 + 2K2 + 2K3 +K4)/6
t← t0 + ih

output i, t, y
end do end for

26.4 Exercises

From the textbook: 2.a.c., 14.a.c. p 281; 27, 28 p 282.

Optional problems

From the textbook: 31 p 283.
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Chapter 27

Multistep methods

27.1 Description of the method

The Taylor series and the Runge–Kutta methods for solving an initial-value problem are
singlestep methods, in the sense that they do not use any knowledge of prior values of
y when the solution is being advanced from t to t + h. Indeed, if t0, t1, . . . , ti, ti+1 are steps
along the t-axis, then the approximation of y at ti+1 depends only on the approximation of y
at ti, while the approximations of y at ti−1, ti−2, . . . , t0 are not used. Taking these values into
account should, however, provide more efficient procedures. We present the basic principle
involved here on a particular case. Suppose we want to solve numerically the initial-value
problem y′(t) = f(t, y), with y(t0) = y0. We prescribe the [usually equidistant] mesh points
t0, t1, . . . , tn. By integrating on [ti, ti+1], we have

y(ti+1) = y(ti) +
∫ ti+1

ti

f(t, y(t))dt.

This integral can be approximated by a numerical quadrature scheme involving the values
f(tj , y(tj)) for j ≤ i. Thus we will define yi+1 by a formula of the type

yi+1 = yi + afi + bfi−1 + cfi−2 + · · · ,

where fj := f(tj , yj). An equation of this type is called an Adams–Bashforth formula.
Let us determine the coefficients appearing in this equation for a five-step method [mean-
ing that one step involves the five preceding ones]. To be determined are the coefficients
a, b, c, d, e in the quadrature formula

(27.1)
∫ 1

0
F (x)dx ≈ aF (0) + bF (−1) + cF (−2) + dF (−3) + eF (−4),
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which we require to be exact on P4. We follow the method of undetermined coefficients,
working with the basis of P4 consisting of

p0(x) = 1,

p1(x) = x,

p2(x) = x(x+ 1),

p3(x) = x(x+ 1)(x+ 2),

p4(x) = x(x+ 1)(x+ 2)(x+ 3).

Substituting p0, p1, p2, p3, p4 into (27.1) results in the system of equations

a + b + c + d + e = 1
− b − 2c − 3d − 4e = 1/2

2c + 6d + 12e = 5/6
− 6d − 24e = 9/4

24e = 251/30

It yields e = 251/720, d = −1274/720, c = 2616/720, b = −2774/720, a = 1901/720. Finally,
the Adams–Bashforth formula of order five is

yi+1 = yi +
h

720
[
1901 fi − 2774 fi−1 + 2616 fi−2 − 1274 fi−3 + 251 fi−4

]
.

Observe that only y0 is available at the start, while the procedure requires y0, y1, y2, y3, y4

to be initiated. A Runge–Kutta method is ideal to obtain these values.

27.2 A catalog of multistep methods

In general, a (m+ 1)-step method is based on the format

(27.2) yi+1 = am yi + · · ·+ a0 yi−m + h
[
bm+1 fi+1 + bm fi + · · ·+ b0 fi−m

]
.

If the coefficient bm+1 is zero, then the method is said to be explicit, since yi+1 does not
appear on the right-hand side, thus yi+1 can be computed directly from (27.2). If otherwise
the coefficient bm+1 is nonzero, then yi+1 appears on the right-hand side of (27.2) by way of
fi+1 = f(ti+1, yi+1), and Equation (27.2) determines yi+1 implicitly. The method is therefore
said to be implicit.

We now list, for reference only, various Adams–Bashforth and Adams–Moulton formulae.
The latter are derived just as the former would be – see Section 27.1 – except that the
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quadrature formula for
∫ 1

0
F (x)dx also incorporates the value F (1). This implies that

the Adams–Moulton methods are implicit, by opposition to the explicit Adams–Bashforth
methods.

[Beware, the following are prone to typographical mistakes!]

• Adams–Bashforth two-step method

yi+1 = yi +
h

2
[
3 fi − fi−1

]
Local truncation error:

5
12
y(3)(ξi)h2, for some ξi ∈ (ti−1, ti+1).

• Adams–Bashforth three-step method

yi+1 = yi +
h

12
[
23 fi − 16 fi−1 + 5 fi−2

]
Local truncation error:

3
8
y(4)(ξi)h3, for some ξi ∈ (ti−2, ti+1).

• Adams–Bashforth four-step method

yi+1 = yi +
h

24
[
55 fi − 59 fi−1 + 37 fi−2 − 9 fi−3

]
Local truncation error:

251
720

y(5)(ξi)h4, for some ξi ∈ (ti−3, ti+1).

• Adams–Bashforth five-step method

yi+1 = yi +
h

720
[
1901 fi − 2774 fi−1 + 2616 fi−2 − 1274 fi−3 + 251 fi−4

]
Local truncation error:

95
288

y(6)(ξi)h5, for some ξi ∈ (ti−4, ti+1).

• Adams–Moulton two-step method

yi+1 = yi +
h

12
[
5 fi+1 + 8 fi − fi−1

]
Local truncation error: − 1

24
y(4)(ξi)h3, for some ξi ∈ (ti−1, ti+1).

• Adams–Moulton three-step method

yi+1 = yi +
h

24
[
9 fi+1 + 19 fi − 5 fi−1 + fi−2

]
Local truncation error: − 19

720
y(5)(ξi)h4, for some ξi ∈ (ti−2, ti+1).
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• Adams–Moulton four-step method

yi+1 = yi +
h

720
[
251 fi+1 + 646 fi − 264 fi−1 + 106 fi−2 − 19 fi−3

]
Local truncation error: − 3

160
y(6)(ξi)h5, for some ξi ∈ (ti−3, ti+1).

Note that the order of the local truncation error of the Adams–Moulton m-step method
matches the one of the Adams–Bashforth (m + 1)-step method, for the same number of
function evaluations. Of course, this has a price, namely solving the equation in yi+1.

27.3 Predictor–corrector method

In numerical practice, the Adams–Bashforth formulae are rarely used by themselves, but
in conjunction with other formulae to enhance the precision. For instance, the Adams–
Bashforth five-step formula can be employed to predict a tentative estimate for the value
yi+1 given by the Adams–Moulton five-step formula, denote this estimate by y∗i+1, and use
it to replace fi+1 = f(ti+1, yi+1) by its approximation f∗i+1 = f(ti+1, y

∗
i+1) in the Adams–

Moulton formula, thus yielding a corrected estimate for yi+1. This general principle pro-
vides satisfactory algorithms, called predictor–corrector methods. In fact, remark that
yi+1 should be interpreted as a fixed point of a certain mapping φ, and as such may be
computed, under appropriate hypotheses, as the limit of the iterates φk(z), for suitable
z. Note that the predictor–corrector simply estimates yi+1 by φ(y∗i+1). A better estimate
would obviously be obtained by applying φ over again, but in practice only one or two fur-
ther iterations will be performed. To accompany this method, we can suggest the following
pseudocode.

27.4 Exercises

From the textbook: 3.b.d., 7.b.d., 8.b.d. p 301; 13, 14 p 302.
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Chapter 28

Systems of higher-order ODEs

28.1 Reduction to first-order ordinary differential equations

A system of first-order ordinary differential equations takes the standard form

(28.1)


y′1 = f1(t, y1, . . . , yn),
y′2 = f2(t, y1, . . . , yn),

...
y′n = fn(t, y1, . . . , yn).

As an example, we may consider a simple version of the predator–prey model, in which
x stands for the number of preys and y for the number of predators. The equations are{

x′ = a x − b x y

y′ = c x y − d y
, for some nonnegative paramaters a, b, c, d.

As another example, we may consider a linear system of differential equations, such as{
x′ = x + 4y − et,

y′ = x + y + 2et,

whose general solution is

x(t) = 2ae3t − 2be−t − 2et,
y(t) = ae3t + be−t + et/4,

a, b arbitrary constants.

These constants are to be determined from a set of two conditions, e.g. the initial conditions
x(0) = 4 and y(0) = 5/4. In general, a set of n initial conditions yi(t0) = y0,i, i ∈ J1, nK, will
come with the system (28.1).
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Observe now that this system can be rewritten using a condensed vector notation, setting

Y :=


y1

y2

...
yn

− a mapping from R into Rn, F :=


f1

f2

...
fn

− a mapping from R× Rn into Rn,

thus yielding the more convenient form

Y ′ = F (t, Y ).

The initial conditions then translates into the vector equality Y (t0) = Y0.

A higher-order differential equation can also be converted into this vector format, by trans-
forming it first into a system of first-order ordinary differential equations. Indeed, for the
differential equation

y(n) = f(t, y, y′, . . . , y(n−1)),

we may set x1 := y, x2 := y′, . . . , xn := y(n−1), so that one has
x′1 = x2,

...
x′n−1 = xn,

x′n = f(t, x1, . . . , xn).

The same approach can of course be applied to systems of higher-order ordinary differential
equations. To illustrate this point, one may check that the system{

(x′′)2 + t ey + y′ = x′ − x,
y′ y′′ − cos(x y) + sin(t x y) = x,

can be rewritten as 
x′1 = x2,

x′2 = [x2 − x1 − x4 − t ex3 ]1/2,

x′3 = x4,

x′4 = [x1 − sin(t x2 x3) + cos(x1 x3)]/x4.

Remark also that any system of the form (28.1) can be transformed into an autonomous
system, i.e. a system that does not contains t explicitely. It suffices for that to introduce
the function y0(t) = t, to define Y = [y0, y1, . . . , yn]> and F = [1, f1, . . . , fn]>, so that (28.1) is
expressed as Y ′ = F (Y ).
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28.2 Extensions of the methods

28.2.1 Taylor series method for systems

We write a truncated Taylor expansion for each of the unknown functions in (28.1) as

yi(t+ h) ≈ yi(t) + hy′i(t) +
h2

2
y′′i (t) + · · ·+ hn

n!
y

(n)
i (t),

or, in the shorter vector notation,

Y (t+ h) ≈ Y (t) + hY ′(t) +
h2

2
Y ′′(t) + · · ·+ hn

n!
Y (n)(t).

The derivatives appearing here are to be computed from the differential equation before
being included [in the right order] in the code. For instance, to solve the system{

x′ = x+ y2 − t3, x(1) = 3,
y′ = y + x3 + cos(t), y(1) = 1,

numerically on the interval [0, 1], we may follow the pseudocode

input a, b, α, β, n
t← b, x← α, y ← β, h← (b− a)/n
output t, x, y
for k = 1 to n do

x1← x+ y2 − t3

y1← y + x3 + cos(t)
x2← x1 + 2yy1− 3t2

y2← y1 + 3x2x1− sin(t)
x3← x2 + 2yy2 + 2(y1)2 − 6t
y3← y2 + 6x(x1)2 + 3x2x2− cos(t)
x← x− h(x1− h/2(x2− h/3(x3)))
y ← y − h(y1− h/2(y2− h/3(y3)))
t← b− kh
output t, x, y

end do end for
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28.2.2 Runge–Kutta method for systems

For an autonomous system, the classical fourth-order Runge–Kutta formula reads, in vec-
tor form,

Y (t+ h) ≈ Y (t) +
1
6
[F1 + 2F2 + 2F3 + F4], with


F1 = hF (Y (t)),
F2 = hF (Y (t) + F1/2),
F3 = hF (Y (t) + F2/2),
F4 = hF (Y (t) + F3).

28.2.3 Multistep method for systems

Adapting the usual case turns out to be straightforward, too. The vector form of the
Adams–Bashforth–Moulton predictor–corrector method of order five, for example, reads

Y ∗(t+ h) ≈ Y (t) +
h

720
[
1901F (Y (t))− 2774F (Y (t− h)) + 2616F (Y (t− 2h))

−1274F (Y (t− 3h)) + 251F (Y (t− 4h))
]
,

Y (t+ h) ≈ Y (t) +
h

720
[
251F (Y ∗(t+ h)) + 646F (Y (t))− 264F (Y (t− h))

+106F (Y (t− 2h))− 19F (Y (t− 3h))
]
.

28.3 Exercises

From the textbook: 6, 9, 10 p 324.

1. Convert the system of second-order ordinary differential equations{
x′′ − x′y = 3y′x log(t),
y′′ − 2xy′ = 5x′y sin(t),

into an autonomous first-order differential equation in vector form.
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Chapter 29

Boundary value problems
Consider a second-order differential equation of the type

y′′ = f(t, y, y′), t ∈ [a, b],

where the two conditions on y and y′ at t = a are replaced by two conditions on y at t = a

and at t = b, i.e. we specify
y(a) = α, y(b) = β.

This is an instance of a two-point boundary-value problem. It is usually harder to
deal with than an initial-value problems, in particular it cannot be solved numerically
by the step-by-step methods described earlier. The question of existence and uniqueness of
solutions is not easily answered either. For example, the second-order differential equation
y′′+ y = 0 [whose general solution is c1 sin(t) + c2 cos(t)] will have infinitely many solutions
if coupled with the boundary conditions y(0) = 1 and y(π) = 1, no solution if coupled with
the conditions y(0) = 1 and y(π) = 0, and a unique solution if coupled with the conditions
y(0) = 1 and y(π/2) = −3. Existence and uniquness theorems do exist, however, and we
simply mention one of them.

Theorem 29.1. If the functions f , fy, and fy′ are continuous on the domain D := [a, b] ×
(−∞,∞)× (−∞,∞), and if

1. fy(t, y, y′) > 0 for all (t, y, y′) ∈ D,

2. sup
(t,y,y′)∈D

|fy′(t, y, y′)| <∞,

then the boundary-value problem

y′′ = f(t, y, y′), t ∈ [a, b], y(a) = α, y(b) = β,

admits a unique solution.
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As a consequence, we can derive the following result.

Corollary 29.2. The linear boundary-value problem

y′′(t) = p(t) y′(t) + q(t) y(t) + r(t), t ∈ [a, b], y(a) = α, y(b) = β,

admits a unique solution as soon as the functions p, q, and r are continuous on [a, b] and
q(t) > 0 for all t ∈ [a, b].

This applies e.g. to the equation y′′ = y, but not to the equation y′′ = −y, as expected from
the previous discussion. It is instructive to attempt a direct proof of Corollary 29.2, and
one is advised to do so. We now focus on our primary interest, namely we ask how to solve
boundary-value problems numerically.

29.1 Shooting method

Since methods for initial-value problems are at our disposal, we could try and use them
in this situation. Precisely, we will make a guess for the initial value y′(a) and solve the
corresponding initial-value problem, hoping that the resulting y(b) agrees with β. If not,
we alter our guess for y′(a), compute the resulting y(b), and compare it with β. The process
is repeated as long as y(b) differs too much from β. This scheme is called the shooting
method. To formalize the procedure, consider the initial-value problem

y′′ = f(t, y, y′), t ∈ [a, b], y(a) = α, y′(a) = z,

where only z is variable here. Then, assuming existence and uniqueness of the solution y,
its value at the right endpoint depends on z. We may write

ϕ(z) := y(b), or ψ(z) := y(b)− β.

Our goal is to solve the equation ψ(z) = 0, for which we have already developed some
techniques. Note that, in this approach, any algorithm for the initial-value problem can be
combined with any algorithm for root finding. The choices are determined by the nature of
the problem at hand. We choose here to use the secant method. Thus, we need two initial
guesses z1 and z2, and we construct a sequence (zn) from the iteration formula

zn+1 = zn − ψ(zn)
zn − zn−1

ψ(zn)− ψ(zn−1)
, i.e. zn+1 = zn + (β − ϕ(zn))

zn − zn−1

ϕ(zn)− ϕ(zn−1)
.

We will monitor the value of ψ(z) = ϕ(z)−β as we go along, and stop when it is sufficiently
small. Note that the valuess of the approximations yi are to be stored until better ones
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are obtained. Remark also that the function ϕ is very expensive to compute, so that in the
first stages of the shooting method, as high precision is essentially wasted, a large step
size should be used. Let us now observe now that the secant method provides the exact
solution in just one step if the function ϕ is linear. This will occur for linear boundary-value
problems. Indeed, if y1 and y2 are solutions of

(29.1) y′′ = p y′ + q y + r, t ∈ [a, b], y(a) = α,

with y′1(a) = z1 and y′2(a) = z2, then for any λ the function ỹ := (1 − λ)y1 + λy2 is the
solution of (29.1) with ỹ ′(a) = (1 − λ)z1 + λz2. Considering the value of ỹ at b, we get
ϕ((1− λ)z1 + λz2) = (1− λ)ϕ(z1) + λϕ(z2), which characterizes ϕ as a linear function.

Let us finally recall that the secant method outputs zn+1 as the zero of the linear func-
tion interpolating ψ at zn−1 and zn [think of the secant line]. An obvious way to refine
the shooting method would therefore be to use higher-order interpolation. For example,
we could form the cubic polynomial p that interpolates ψ at z1, z2, z3, z4, and obtain z5 as
the solution of p(z5) = 0. Still with cubic interpolants, an even better refinement involves
inverse interpolation. This means that we consider the cubic polynomial q that inter-
polates the data z1, z2, z3, z4 at the points ψ(z1), ψ(z2), ψ(z3), ψ(z4), and we obtain z5 as
z5 = q(0).

29.2 Finite-difference methods

Another approach consists of producing a discrete version of the boundary value problem

y′′ = f(t, y, y′), t ∈ [a, b], y(a) = α, y(b) = β.

For this purpose, we partition the interval [a, b] into n equal subintervals of length h =
(b− a)/n and we exploit the centered-difference formulae

y′(t) =
1
2h
[
y(t+ h)− y(t− h)]− h2

6
y(3)(ξ), ξ between t− h and t+ h,

y′′(t) =
1
h2

[
y(t+ h)− 2y(t) + y(t− h)

]
− h2

12
y(4)(ζ), ζ between t− h and t+ h,

to construct approximations yi of the solution at the mesh points ti = a + ih, i ∈ J0, nK.
Neglecting the error terms, the original problem translates into the system

(29.2)


y0 = α,

yi+1 − 2yi + yi−1 = h2 f
(
ti, yi, [yi+1 − yi−1]/2h

)
, i ∈ J1, n− 1K,

yn = β.
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In the linear case [i.e. for f(t, y, y′) = p(t)y′ + q(t)y + r(t)], the equations (29.2) for the
unknowns y1, . . . , yn−1 can be written in matrix form as

d1 b1

a2 d2 b2
. . . . . . . . .

an−2 dn−2 bn−2

an−1 dn−1





y1

y2

...
yn−2

yn−1


=



c1 − a0α

c2
...

cn−2

cn−1 − bn−1β


, with



di =2 + h2q(ti),

ai =− 1− hp(ti)/2,

bi =− 1 + hp(ti)/2,

ci =− h2r(ti).

Note that the system is tridiagonal, therefore can be solved with a special Gaussian algo-
rithm. Observe also that, under the hypotheses of Corollary 29.2 and for h small enough,
the matrix is diagonally dominant, hence nonsingular, since |ai|+ |bi| = 2 < |di|. Under the
same hypotheses, we can also show that the discrete solution converges towards the actual
solution, in the sense that max

i∈J0,nK
|yi − y(ti)| −→

h→0
0.

In the nonlinear case, the equations (29.2) can be written as

F (Y ) = 0, with Y := [y1, . . . , yn−1]>, F an appropriate vector of functions fi.

Newton’s method for nonlinear system can be called upon in this setting [see Section 13.3].
We construct a sequence (Y [k]) of vector according to the iteration formula

(29.3) Y [k+1] = Y [k] − F ′(Y [k])−1F (Y [k]).

As in the unidimensional case, convergence is ensured provided that one starts with Y [0]

close enough to the solution and that the Jacobian matrix F ′(Y [k]) is invertible. Recall that

the Jacobian matrix displays the entries
∂fi

∂yj
, so that it takes the form


. . . . . . . . .

−1 + hui/2 2 + h2vi −1− hui/2
. . . . . . . . .

 , with

{
ui :=fy′(ti, yi, [yi+1 − yi−1]/2h),

vi :=fy (ti, yi, [yi+1 − yi−1]/2h).

This matrix appears to be diagonally dominant, hence invertible, for h small enough pro-
vided that we make the assumptions that fy′ is bounded and that fy is positive – see the
hypotheses of Theorem 29.1. Then the vector Y [k+1] has to be explicitely computed from
(29.3), not by inverting the Jacobian matrix but rather by solving a linear system. This
task is not too demanding, since the Jacobian matrix is tridiagonal.
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29.3 Collocation method

Remark that the linear boundary-value problem can be expressed as

(29.4) Ly = r,

where Ly is defined to be y′′ − py′ − qy. The collocation method we are about to present
only relies on the fact that L is a linear operator. The idea is to try and find a solution of
the equation (29.4) in the form

y = c1 v1 + · · ·+ cnvn,

where the functions v1, . . . , vn are chosen at the start. By linearity of L, the equation (29.4)
becomes

n∑
i=1

ci Lvi = r.

In general, there is no hope to solve this for the coefficients c1, . . . , cn, since the solution y

has no reason to be a linear combination of v1, . . . , vn. Instead of equality everywhere, we
will merely require that the function

∑
i ci Lvi interpolates the function r at n prescribed

points, say τ1, . . . , τn. Thus, we need to solve the n× n system

(29.5)
n∑

i=1

ci (Lvi)(τj) = r(τj), j ∈ J1, nK.

Let us suppose, for simplicity, that we work on the interval [0, 1] and that α = 0 and β = 0
[see how we can turn to this case anyway]. We select the functions v1, . . . , vn to be

vi,n = ti(1− t)n+1−i, i ∈ J1, nK.

The calculation of Lvi,n does not present any difficulties and is in fact most efficient if we
use the relations

v′i,n = i vi−1,n−1 − (n+ 1− i) vi,n−1

v′′i,n = i(i− 1) vi−2,n−2 − 2i(n+ i− 1) vi−1,n−2 + (n+ 1− i)(n− i) vi,n−2.

It is not hard to realize [try it] that this choice of functions v1, . . . , vn leads to a nonsingular
collocation system (29.5).

It is more popular, however, to consider some B-splines for the functions v1, . . . , vn. A brief
account on B-splines will be given separately to this set of notes.
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29.4 Exercises

From Chapter 11 of the textbook, of your own liking.

—————————————————–
XXXXXXXXXXXXXXXXXXXXXXXXX
—————————————————–
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