Inner products from matrices

Several of the problems assigned for homework involve determining when, for an $n \times n$ matrix $A,\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{y}^{*} A \mathbf{x}$ is an inner product on \mathbb{R}^{n} or \mathbb{C}^{n}. (B^{*} is the conjugate transpose of $B: B_{j, k}^{*}=\bar{B}_{k, j}$. When B is real, it's the transpose.)

It is easy to show that to meet the requirements of symmetry/conjugate symmetry, homogeneity and additivity for $\langle\mathbf{x}, \mathbf{y}\rangle$ to be an inner product, the matrix A has to be Hermition $-A^{*}=A$. Positivity is usually the hard one to meet. It wil hold if and only if the eigenvalues of A are positive. I'm not going to give a proof, but just give a 2×2 exmples.
Example 0.1. Let $A=\left(\begin{array}{cc}13 & 5 \\ 5 & 13\end{array}\right)$. Since $A^{*}=A^{T}=A$, the matrix meets the condition of being Hermitian. The eigenvalues are the roots of $\lambda^{2}-26 \lambda+144=0$. Solving this we get $\lambda_{1}=16$ and $\lambda_{2}=8$. In addition, the eigenvectors are $\binom{1}{1}$ and $\binom{-1}{1}$. These are orthogonal. We can normalize them so that they form an orthonormal set and put then put them into the matrix

$$
S=\left(\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right)
$$

which is orthogonal - i.e., $S^{T}=S^{-1}$. With a little bit of work, we can show that $A=S \Lambda S^{T}$, where $\Lambda=\left(\begin{array}{cc}16 & 0 \\ 0 & 8\end{array}\right)$. What does this mean for positivity? To get positivity, we must show that for $\mathbf{x} \neq \mathbf{0}$,

$$
\langle\mathrm{x}, \mathrm{x}\rangle=\mathrm{x}^{*} A \mathrm{x}>0
$$

Using $A=S \Lambda S^{T}$, the inner product takes the form $\langle\mathbf{x}, \mathbf{x}\rangle=\mathbf{x}^{*} S \Lambda S^{T} \mathbf{x}$. If we let $\mathbf{y}=S^{T} \mathbf{x}$, and use $\mathbf{y}=\binom{y_{1}}{y_{2}}$, we end up with

$$
\langle\mathbf{x}, \mathbf{x}\rangle=16 y_{1}^{2}+8 y_{2}^{2}>0,
$$

provided at least y_{1} or y_{2} is not 0 . If both were 0 , then \mathbf{y} would be $\mathbf{0}$. Since $\mathbf{y}=S^{T} \mathbf{x}=S^{-1} \mathbf{x}$, this would mean that $\mathbf{x}=S \mathbf{y}=\mathbf{0}$. But we have assumed that $\mathbf{x} \neq \mathbf{0}$. The proof in the general case, even with complex scalars, follows from being able to put A in the form $A=S \Lambda S^{T}$ in the real case, and $A=S \Lambda S^{*}$ in the complex case. A theorem from inear algebra shows this can always be done.

