Relatioship between Fourier series for f and f^{\prime}

In problem 2, HW 5 (2024), the coefficient a_{0}^{\prime} in the series for f^{\prime} has to be 0 . Here's why.

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(x) d x=\frac{1}{2 \pi}(f(\pi)-f(-\pi))
$$

Since f is 2π periodic and continuous, we have that $f(\pi)=f(-\pi)$. Hence, $f(\pi)-f(-\pi)=0$ and $a_{0}^{\prime}=0$. So to get a_{0}, you still have do the integral $a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x$. However, in problem 2, f is odd, so $a_{0}=0$.

As an example, consider finding the Fourier coefficients for $f(x)=x^{2}$, where $-\pi \leq x \leq \pi$. (Note that the 2π periodic extension of f is continuous and piecewise smooth, so the conditins of Theorem 1.30 apply and the series for x^{2} converges uniformly.) Now, $f^{\prime}=2 x$ on $-\pi<x<\pi$. It's Fourier series converges to the 2π periodic extension of f^{\prime}, with the extension being 0 at all multiples π. It's easy to find the FS for $2 x$, which turns out to be

$$
f^{\prime}(x)=2 x=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n} \sin (n x)
$$

The formulas from the problem give, for n not equal to $0, a_{n}=-\left(b_{n}^{\prime}\right) / n=$ $-\frac{4(-1)^{n+1}}{n^{2}}=\frac{4(-1)^{n}}{n^{2}}$. This gives all of the a_{n} except $a_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} x^{2} d x$. Doing this integral gives $a_{0}=\pi^{2} / 3$. The series for $f(x)=x^{2}$ is then
$x^{2}=\pi^{2} / 3+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos (n x)=\pi^{2} / 3-4 \cos (x)+\cos (2 x)-(4 / 9) \cos (3 x) \cdots$
which agrees with the result in problem 1.1 in the text.
Interchanging sum and derivative. In problem 2, HW5 (2024), if f is a 2π piecewise smooth, continuous function, and it has piecewise smooth derivative f^{\prime}, then Fourier series for f and f^{\prime} are

$$
\begin{gathered}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x) \\
f^{\prime}(x)=\sum_{n=1}^{\infty} a_{n}^{\prime} \cos (n x)+b_{n}^{\prime} \sin (n x)
\end{gathered}
$$

We begin by noting that $\frac{d}{d x}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)=n b_{n} \cos (n x)-n a_{n} \sin (n x)$. Using the formulas or the coefficients a_{n}^{\prime} and b_{n}^{\prime} found in the problem, we have $\frac{d}{d x}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)=a_{n}^{\prime} \cos (n x)+b_{n}^{\prime} \sin (n x)$. The point is that

$$
f^{\prime}(x)=\frac{d}{d x}\left(\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)\right)=\sum_{n=1}^{\infty} \frac{d}{d x}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

Thus to obtain the series for f^{\prime} it is permissible to interchange the sum and derivative in f. (Normally you can't do this.)

