Relatioship between Fourier series for f and f'

In problem 2, HW 5 (2024), the coefficient a'_0 in the series for f' has to be 0. Here's why.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f'(x) dx = \frac{1}{2\pi} \big(f(\pi) - f(-\pi) \big)$$

Since f is 2π periodic and continuous, we have that $f(\pi) = f(-\pi)$. Hence, $f(\pi) - f(-\pi) = 0$ and $a'_0 = 0$. So to get a_0 , you still have do the integral $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$. However, in problem 2, f is odd, so $a_0 = 0$.

As an example, consider finding the Fourier coefficients for $f(x) = x^2$, where $-\pi \leq x \leq \pi$. (Note that the 2π periodic extension of f is continuous and piecewise smooth, so the conditins of Theorem 1.30 apply and the series for x^2 converges uniformly.) Now, f' = 2x on $-\pi < x < \pi$. It's Fourier series converges to the 2π periodic extension of f', with the extension being 0 at all multiples π . It's easy to find the FS for 2x, which turns out to be

$$f'(x) = 2x = \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n} \sin(nx)$$

The formulas from the problem give, for *n* not equal to 0, $a_n = -(b'_n)/n = -\frac{4(-1)^{n+1}}{n^2} = \frac{4(-1)^n}{n^2}$. This gives all of the a_n except $a_0 = \frac{1}{2\pi} \int_0^{\pi} x^2 dx$. Doing this integral gives $a_0 = \pi^2/3$. The series for $f(x) = x^2$ is then

$$x^{2} = \pi^{2}/3 + \sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos(nx) = \pi^{2}/3 - 4\cos(x) + \cos(2x) - (4/9)\cos(3x) \cdots$$

which agrees with the result in problem 1.1 in the text.

Interchanging sum and derivative. In problem 2, HW5 (2024), if f is a 2π piecewise smooth, continuous function, and it has piecewise smooth derivative f', then Fourier series for f and f' are

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$
$$f'(x) = \sum_{n=1}^{\infty} a'_n \cos(nx) + b'_n \sin(nx)$$

We begin by noting that $\frac{d}{dx}(a_n \cos(nx) + b_n \sin(nx)) = nb_n \cos(nx) - na_n \sin(nx)$. Using the formulas or the coefficients a'_n and b'_n found in the problem, we have $\frac{d}{dx}(a_n \cos(nx) + b_n \sin(nx)) = a'_n \cos(nx) + b'_n \sin(nx)$. The point is that

$$f'(x) = \frac{d}{dx} \left(\sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)\right) = \sum_{n=1}^{\infty} \frac{d}{dx} \left(a_n \cos(nx) + b_n \sin(nx)\right).$$

Thus to obtain the series for f' it is permissible to interchange the sum and derivative in f. (Normally you can't do this.)