Exercise 1, Chapter 4. (Math 414-501, Spring 2010 ${ }^{1}$)
The function $f(x)$ is given by

$$
f(x)=\left\{\begin{aligned}
-1, & 0 \leq x<1 / 4 \\
4, & 1 / 4 \leq x<1 / 2 \\
2, & 1 / 2 \leq x<3 / 4 \\
-3, & 3 / 4 \leq x<1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Since f is in V_{2}, we can write in terms of the basis $\left\{\phi\left(2^{2} x-k\right)\right\}_{k=0}^{3}$ (cf. Definition 4.1 in the text):

$$
f(x)=-\phi(4 x)+4 \phi(4 x-1)+2 \phi(4 x-2)-3 \phi(4 x-3) .
$$

The easiest way to approach decomposing f into its components along V_{0}, W_{0}, and W_{1} is to use Lemma 4.10, which states that

$$
\begin{aligned}
\phi\left(2^{j} x\right) & =\left(\phi\left(2^{j-1} x\right)+\psi\left(2^{j-1} x\right)\right) / 2 \\
\phi\left(2^{j} x-1\right) & =\left(\phi\left(2^{j-1} x\right)-\psi\left(2^{j-1} x\right)\right) / 2 .
\end{aligned}
$$

Begin by getting the V_{1}, W_{1} parts. To do this, replace the functions $\phi(4 x-k)$ as follows:

$$
\begin{aligned}
\phi(4 x) & =(\phi(2 x)+\psi(2 x)) / 2 \\
\phi(4 x-1) & =(\phi(2 x)-\psi(2 x)) / 2, \\
\phi(4 x-2) & =(\phi(2 x-1)+\psi(2 x-1)) / 2 \\
\phi(4 x-3) & =(\phi(2 x-1)-\psi(2 x-1)) / 2
\end{aligned}
$$

Using these, put f into the form

$$
\begin{aligned}
f(x) & =\left(-\frac{1}{2}+2\right) \phi(2 x)+\left(1-\frac{3}{2}\right) \phi(2 x-1)+\left(-\frac{1}{2}-2\right) \psi(2 x)+\left(1+\frac{3}{2}\right) \psi(2 x-1) \\
& =\underbrace{\frac{3}{2} \phi(2 x)-\frac{1}{2} \phi(2 x-1)}_{V_{1}} \underbrace{-\frac{5}{2} \psi(2 x)+\frac{5}{2} \psi(2 x-1)}_{W_{1}} .
\end{aligned}
$$

Finally, use $\phi(2 x)=(\phi(x)+\psi(x)) / 2$ and $\phi(2 x-1)=(\phi(x)-\psi(x)) / 2$ in the equation above to obtain the desired decomposition:

$$
f(x)=\underbrace{\frac{1}{2} \phi(x)}_{V_{0}}+\underbrace{\psi(x)}_{W_{0}} \underbrace{-\frac{5}{2} \psi(2 x)+\frac{5}{2} \psi(2 x-1)}_{W_{1}} .
$$

[^0]There is a second method for solving this problem. The $j=2$ level coefficients for f can be put in row vector form: $a^{2}=\left[\begin{array}{lll}-1 & 4 & 2\end{array}-3\right]$, where the first entry is a_{0}^{2}, the last is a_{3}^{2}. All other a_{k}^{2} coefficients are 0 .

The first step in the decomposition is to find the $j=1$ level coefficients; that is, the a_{k}^{1} 's and b_{k}^{1}. To do this, use the formulas below, which are found in Theorem 4.12.

$$
a_{k}^{j-1}=\frac{a_{2 k}^{j}+a_{2 k+1}^{j}}{2} \quad \text { and } \quad b_{k}^{j-1}=\frac{a_{2 k}^{j}-a_{2 k+1}^{j}}{2}
$$

In our case, we have $j=2$. Our aim is find a^{0}, b^{1} and b^{0}; these will give us the breakdown into V_{0}, W_{0} and W_{1}.

We start by finding a^{1}. Note that both $a_{2 k}^{2}=0$ and $a_{2 k+1}^{2}=0$ for $k<0$ and $k>1$. It follows that we only need to find a_{k}^{1} and b_{k}^{1} for $k=0,1$. Using the formulas above we obtain

$$
a_{0}^{1}=\frac{-1+4}{2}=\frac{3}{2}, a_{1}^{1}=\frac{2+(-3)}{2}=-\frac{1}{2}
$$

so that $a^{1}=\left[\begin{array}{ll}\frac{3}{2} & -\frac{1}{2}\end{array}\right]$. Similarly, $b^{1}=\left[-\frac{5}{2} \frac{5}{2}\right]$. Following the procedure above for a^{0}, we see that $a_{0}^{0}=\frac{\frac{3}{2}+\left(-\frac{1}{2}\right)}{2}=\frac{1}{2}$; thus, $a^{0}=\left[\frac{1}{2}\right]$. Similarly, $b_{0}^{0}=\frac{\frac{3}{2}-\left(-\frac{1}{2}\right)}{2}=1$. Thus, $b^{0}=[1]$. Finally, we have $f(x)=\frac{1}{2} \phi(x)+\psi(x)-$ $\frac{5}{2} \psi(2 x)+\frac{5}{2} \psi(2 x-1)$, which agrees with the answer from the previous method.

[^0]: ${ }^{1}$ Revised $4 / 2 / 2018$.

